
 

© Copyright 2015 NCC Group  

 

An NCC Group Publication 

 

Exploiting the win32k!xxxEnableWndSBArrows 

use-after-free (CVE 2015-0057) bug on both 32-bit 

and 64-bit 

 
Prepared by: 

Aaron Adams  

 

 

 

 

 

 

 

 

 

 

 

 



 

NCC Group | Page 2 © Copyright 2015 NCC Group 

 
tl;dr 
 

Earlier this year I worked on an exploit for an interesting use-after-free vulnerability in 

win32k.sys (CVE-2015-0057) and was able to develop a reliable exploit on both 32-bit and 64-

bit, affecting XP through Windows 8.1 (with a few exceptions). This writeup describes in detail 

how I approached exploitation on both architectures, which ended up being somewhat different. 

I also describe how exploitation works on Windows 8.1 with SMEP and in a low integrity 

environment. 

The post is quite long, but I try to provide a lot of detail to demonstrate what is involved in 

exploiting this bug instead of glazing over details, although I do still glaze over some. Hopefully 

the level of detail is helpful. 

 

Introduction 

On February 10, 2015, Microsoft released MS15-10 to address a number of vulnerabilities. The 

bug was found by Udi Yavo of enSilo. Udi released a nice analysis of the vulnerability on 

the breaking malware blog. I recommend reading it to better understand the bug, although I do 

try to explain most of the details here, as I had to overcome a few hurdles to get it to trigger. 

This bug was really interesting to exploit, but there are a lot of details omitted from the blog post 

by Udi, which he acknowledges: 

Responsible disclosure: although this blog entry is technical, we 

won’t reveal any code, or the complete details, to prevent any tech 

master from being able to reproduce an exploit. 

As an added bonus to exploiting this bug we get to evolve into our next Pokémon form: tech 

wizard. I want to give Udi credit for finding the bug, providing the information he did, and 

exploiting the bug, which he demonstrates on his blog. It was really helpful. 

I had never exploited a win32k.sys vulnerability before, and was not familiar with usermode 

callbacks or many of the APIs I was using, so I would also like acknowledge the amazing 

resources made available online by a few well-known security researchers: Skywing, Tarjei 

Mandt, Alex Ionescu, j00ru, etc. All of these people deserve massive kudos for providing so 

much technical information publicly. One of the papers I used extensively was Tarjei Mandt’s 

Win32k.sys exploitation paper. I highly recommend reading that if you have no familiarity with 

win32k.sys. 

Since I wrote my exploit, a nice reverse-engineered exploit was made available for CVE-2015-

1701, which is useful for seeing an actual code example of how to hook usermode callbacks. 

Kudos to those who reversed that and made it available. 

https://technet.microsoft.com/library/security/MS15-010
http://breakingmalware.com/vulnerabilities/one-bit-rule-bypassing-windows-10-protections-using-single-bit/
https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
https://github.com/hfiref0x/CVE-2015-1701
https://github.com/hfiref0x/CVE-2015-1701
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It’s probably worth noting that most of my analysis below was done on a Windows 7 installation, 

because it appears to be the only version that has corresponding symbols available for most of 

the win32k.sys structures. Microsoft pulled the information out again as of 8, for an unknown 

reason. 

Lastly I want to say that the way I approach exploiting this bug is quite complicated. It’s entirely 

possible that there is a much easier way to do it that I just overlooked. I’d love to hear if 

someone did it a different way. Either way I hope what’s described is still useful for people 

researching win32k.sys bugs. 

 

The bug 
 

The following shows the, fairly subtle, bug when you look at it just in the disassembly of 

win32k!xxxEnableWndSBArrows : 

Unpatched 

.text:FFFFF97FFF1B157D                 mov     r8d, r13d 

.text:FFFFF97FFF1B1580                 mov     rdx, r14 

.text:FFFFF97FFF1B1583                 call    xxxDrawScrollBar           

; xxxDrawScrollBar could've issued usermode callback 

.text:FFFFF97FFF1B1588                 jmp     short 

loc_FFFFF97FFF1B1519 

[...] 

.text:FFFFF97FFF1B1519                 mov     eax, [rbx]                 

; Dereference tagSBINFO ptr without sanity check 

.text:FFFFF97FFF1B151B                 mov     ebp, 0FFFFFFFBh 

.text:FFFFF97FFF1B1520                 xor     eax, esi 

 

In the code above, win32k!xxxDrawScrollBar   can under the right circumstances make a 

call to userland at which point the tagSBINFO  can be freed by the attacker. When returning to 

the code above, the instruction at 0xFFFFF97FFF1B1519 will then use the now invalid pointer. 

Patched 

.text:FFFFF97FFF1D69C3                 xor     r8d, r8d 

.text:FFFFF97FFF1D69C6                 mov     rdx, rbp 

.text:FFFFF97FFF1D69C9                 call    xxxDrawScrollBar           

; Could've issued usermode callback 
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.text:FFFFF97FFF1D69CE                 cmp     rbx, [rdi+0B0h]            

; Is tagSBINFO ptr still correct? 

.text:FFFFF97FFF1D69D5                 jz      short 

loc_FFFFF97FFF1D69E4 ; If so, continue 

.text:FFFFF97FFF1D69D7 

.text:FFFFF97FFF1D69D7 loc_FFFFF97FFF1D69D7:                    

.text:FFFFF97FFF1D69D7                 mov     rcx, rbp                    

.text:FFFFF97FFF1D69DA                 call    _ReleaseDC 

.text:FFFFF97FFF1D69DF                 jmp     loc_FFFFF97FFF1D6958       

; Jump to exit function block 

.text:FFFFF97FFF1D69E4 ; ---------------------------------------------

------------------------------ 

.text:FFFFF97FFF1D69E4 

.text:FFFFF97FFF1D69E4 loc_FFFFF97FFF1D69E4:                   

.text:FFFFF97FFF1D69E4                 mov     eax, [rbx]                 

; Safely deref the unchanged tagSBINFO ptr 

.text:FFFFF97FFF1D69E6                 xor     eax, r14d 

In the patched version above, we see that the original tagSBINFO  pointer is checked for NULL 

before being dereferenced. More information about the related structures will be provided later. 

 

The Basics - Getting to stage 1 memory corruption 

When building the exploit, we achieve corruption in a series of stages. So we can think of 

triggering the bug as stage one corruption. 

Technically the root of the issue is a use-after-free on the desktop heap (more on that heap 

later). This was confusing to me at first, because I wasn't familiar with usermode callback 

functions used by win32k.sys or how they were expected to work, so I thought the problem 

might actually be a race condition due to some locking issue that in turn let you trigger the use-

after-free. But in the end, the locking of the structures that actually support locking was correct 

and the way things are behaving on that front is expected. The real problem in a nutshell is: 

1. The win32k!xxxEnableWndSBArrows  function holds a desktop heap pointer to 

a tagSBINFO  struct, used to describe a scrollbar, that it reads out of the associated 

window's tagWND  struct. 

2. The win32k!xxxEnableWndSBArrows  function makes a call to a function that can 

result in a usermode callback (that can be hooked). 
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3. Once code is executing in userland, changes to structures on the desktop heap can 

occur by calling other win32k.sys system calls, including freeing the tagSBINFO  struct 

from the desktop heap. 

4. Upon returning to kernel mode, the win32k!xxxEnableWndSBArrows  does not re-

reference and validate the original tagSBINFO  pointer from the tagWND  struct it was 

originally obtained from (which would now indicate it as being freed), but instead keeps 

using the now-stale pointer. 

That's it. Ignoring how usermode callbacks work for now, this part is pretty straightforward. 

Understanding what we control 

But what does this actually let us corrupt and why? As Udi’s blog post mentions, you can 

effectively set or unset two bits from what the code believes is the WSBFlags  member of 

the tagSBINFO  structure. This isn't really an ideal use-after-free scenario, but the paper gives a 

hint how to leverage this, which I will describe in the next section. But first, let's better 

understand how we can control the bit manipulation. 

First let's look at the tagSBINFO  structure (consistent across 32/64-bit): 

kd> dt -b !tagSBINFO 

win32k!tagSBINFO 

   +0x000 WSBflags         : Int4B 

   +0x004 Horz             : tagSBDATA 

      +0x000 posMin           : Int4B 

      +0x004 posMax           : Int4B 

      +0x008 page             : Int4B 

      +0x00c pos              : Int4B 

   +0x014 Vert             : tagSBDATA 

      +0x000 posMin           : Int4B 

      +0x004 posMax           : Int4B 

      +0x008 page             : Int4B 

      +0x00c pos              : Int4B 

 

The UAF bug lives in win32k!xxxEnableWndSBArrows(),  which is responsible for enabling 

and disabling one or both of the horizontal and vertical scrollbar arrows associated with a 

scrollbar control. A scrollbar control is effectively a special window used to manipulate a 

scrollbar. It can be created with CreateWindow()  by using the built-in "SCROLLBAR"  system 

class. 

The function prototype for win32k!xxxEnableWndSBArrows()  is: 

http://breakingmalware.com/vulnerabilities/one-bit-rule-bypassing-windows-10-protections-using-single-bit/
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BOOL xxxEnableWndSBArrows(PWND wnd, UINT WSBflags, UINT wArrows); 

The WSBFlags  parameter corresponds to the scrollbar userland constants in WinUser.h , and 

specifies which scrollbar will actually be operated on: 

#define SB_HORZ             0 

#define SB_VERT             1 

#define SB_CTL              2 

#define SB_BOTH             3 

The wArrows  parameter actually specifies the state of the arrows, which is either enabled or 

disabled. Bits being set mean the arrow is disabled and bits unset mean the arrow is enabled. 

The least significant two bits of wArrows  correspond to the horizontal scrollbar. The next two 

bits correspond to the vertical scrollbar. The rest of the wArrows  bits don't matter for the sake 

of exploitation. 

The following code, from win32k!xxxEnableWndSBArrows() , shows setting or unsetting the 

horizontal arrow bits, if the SB_HORZ  or SB_BOTH  flag was set: 

 

The bug actually manifests between setting the horizontal and vertical scrollbar flags. After 

updating the horizontal scrollbar, as long as the window associated with the scrollbar is currently 

visible on the desktop, the win32k!xxxEnableWndSBArrows()  function will 

https://msdn.microsoft.com/en-us/library/windows/desktop/bb787579(v=vs.85).aspx
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call win32k!xxxDrawScrollBar() , which the original paper notes can potentially drive down 

into a usermode callback. 

Before we discuss usermode callbacks, let's first continue to discuss what happens after the call 

to win32k!xxxDrawScrollBar() . This is effectively the same logic as for the horizontal bar, 

but slightly different bits. If we chose to disable the vertical scrollbar, and assuming we triggered 

the use-after-free, this will write two bits into whatever is now allocated in place of 

the tagSBINFO  chunk. So assuming the value was originally 0x2, it would now be 0xe. This is 

shown in the figure below. 

 

This bit flip is enough to eventually get code execution. I did not investigate a way to achieve 

exploitation by unsetting bits, but it might be possible. 

One important thing about the above is that in order for both the horizontal and vertical bars to 

actually be operated on, the scrollbar must have been created in a way that indicates it has 

both. This involves setting the WS_HSCROLL  andWS_VSCROLL  flags when 

calling CreateWindow() . An example is below: 

 g_hSBCtl = CreateWindowEx( 

  0,               // No extended style 

  "SCROLLBAR",              // class 

  NULL,        // name 

  SBS_HORZ | WS_HSCROLL | WS_VSCROLL, // need both SB 

types 

  10,        // x  

  10,        // y  

  100,        // width 

  100,        // height 

  g_hSpray[UAFWND],             // a non control 

parent window is required 

  (HMENU)NULL,      
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  NULL,        // window owner 

  NULL        // extra params 

  ); 

 

You also want to ensure it's visible (it should be by default, but just in case): 

 result = ShowWindow(g_hSBCtl, SW_SHOW); 

 

By default the scrollbars are enabled, once we're ready to try to hit the vulnerable code shown 

above we can disable them, to eventually set the bits we want to corrupt: 

 result = EnableScrollBar(g_hSBCtl, SB_CTL | SB_BOTH, 

ESB_DISABLE_BOTH); 

 

 

Triggering the bug 

So above I explained what the bug is and how to trigger some of the related code, but we're still 

missing the very important step of intercepting the usermode callback triggered 

by win32k!xxxDrawScrollBar()  so we can change the contents of the heap 

before win32k!xxxEnableWndSBArrows()  continues running. We need to actually trigger the 

bug, which, if you don't know anything about win32k.sys  or any of these APIs, as was the 

case with me starting out, is an adventure on its own. 

The original paper contains a good call-stack diagram showing that deep within the functionality 

triggered by thewin32k!xxxDrawScrollBar()  call, the ClientLoadLibrary()  function will 

be called, and gets dispatched through the KeUserModeCallback()  function. We need to 

figure out what exactly KeUserModeCallback()  calls, so we can try to hook it in our process. 

I found a few good papers that had bits and pieces about how usermode callbacks work. The 

posts and papers that touch on it, amongst other win32k areas that I found very useful, are: 

 https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf (Tarjei’s 

white paper) 

 http://azimuthsecurity.com/resources/recon2012_mandt.pptx (Tarjei’s slides with extra info) 

 http://www.nynaeve.net/?p=204 

 http://www.cprogramdevelop.com/3825874/ 

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
http://azimuthsecurity.com/resources/recon2012_mandt.pptx
http://www.nynaeve.net/?p=204
http://www.cprogramdevelop.com/3825874/
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 http://www.zer0mem.sk/?p=410 

 https://www.reactos.org/wiki/Techwiki:RegisterUserApiHook 

 http://pasotech.altervista.org/windows_internals/Win32KSYS.pdf 

 http://j00ru.vexillium.org/?p=614 

 http://uninformed.org/index.cgi?v=10&a=2#SECTION00042000000000000000 

Basically, each process maintains a table of usermode callback function pointers, to which 

the PEB->KernelCallBackTable  member points. When the kernel wants to call a usermode 

function it will pass a function index to KeUserModeCallBack() . In the case above, the index 

corresponds to the __ClientLoadLibrary()  function in userland.  

KeUserModeCallBack()  will end up calling the KiUserModeCallbackDispatch()  function 

in userland, which in turn looks up the index in the PEB->KernelCallBackTable  and 

executes it. 

In order to hook a given entry, you can look up the PEB->KernelCallBackTable  table and 

patch out the __ClientLoadLibrary()  index directly. It should be noted that these indices 

can differ for each OS version, but are consistent across architectures. 

If we want to investigate the PEB->KernelCallBackTable  table to see what's in there and to 

work out indices, we find the address of the table using WinDbg. Note that I alternate between 

32-bit and 64-bit for examples where it shouldn't make a big difference: 

kd> dt !_PEB @$peb 

ntdll!_PEB 

   +0x000 InheritedAddressSpace : 0 '' 

   +0x001 ReadImageFileExecOptions : 0 '' 

   +0x002 BeingDebugged    : 0 '' 

   +0x003 BitField         : 0x8 '' 

   +0x003 ImageUsesLargePages : 0y0 

[...] 

   +0x02c KernelCallbackTable : 0x76daf620 Void 

 

kd> dds 0x76daf620 

76daf620  76d96443 user32!__fnCOPYDATA 

76daf624  76ddf0e4 user32!__fnCOPYGLOBALDATA 

76daf628  76da736b user32!__fnDWORD 

76daf62c  76d9d603 user32!__fnNCDESTROY 

76daf630  76dc50f9 user32!__fnDWORDOPTINLPMSG 

76daf634  76ddf1be user32!__fnINOUTDRAG 

76daf638  76dc6cd0 user32!__fnGETTEXTLENGTHS 

76daf63c  76ddf412 user32!__fnINCNTOUTSTRING 

http://www.zer0mem.sk/?p=410
https://www.reactos.org/wiki/Techwiki:RegisterUserApiHook
http://pasotech.altervista.org/windows_internals/Win32KSYS.pdf
http://j00ru.vexillium.org/?p=614
http://uninformed.org/index.cgi?v=10&a=2#SECTION00042000000000000000
https://en.wikipedia.org/wiki/WinDbg


 

NCC Group | Page 10 © Copyright 2015 NCC Group  

76daf640  76d9ce49 user32!__fnINCNTOUTSTRINGNULL 

[...] 

76daf724  76da3962 user32!__ClientLoadLibrary 

 

kd> ?? (0x76daf724-0x76daf620)/4 

int 0n65 

In the example above we know that the __ClientLoadLibrary  function is index 65, so that is 

the entry we want to hook. What I noticed after hooking is that 

the __ClientLoadLibrary  function is called a lot by win32k-related code! The first thing I 

needed to do was indicate to my hook right before I actually triggered the call that we're 

interested in, so that we could know exactly which call into the hook we needed to change. So 

the hook code checks a global flag, and only tries to do something interesting if it's set. 

There were then two more hurdles: 

1) If I let the original __ClientLoadLibrary  functions behave normally, when I actually 

triggered the vulnerable call in win32k.sys I found that it never ended up actually making its way 

into userland. I didn't investigate this too heavily, but I assume it's possibly because whatever 

library it's loading for this call is already loaded so it determines it doesn't need to call the 

function again. In order to work around this I had my hook manipulate every call 

into __ClientLoadLibrary  to return no result, which forces it to retry to load the library 

constantly. I worked out that passing back NULLs in the structure parameter was enough just by 

reversing __ClientLoadLibrary()  in user32.dll. 

2) The call into EnableScrollBar()  ends up triggering __ClientLoadLibrary  calls before 

the one that's triggered by win32k!xxxDrawScrollBar()  which we want to abuse, so I had 

to work out the number of calls before the one I’m interested in and use a counter so I know to 

trigger the bug on the exact right call into the hook. Fortunately, this count is stable across both 

architectures and OS versions. 

So the hook looks like this: 

void 

ClientLoadLibraryHook(void * p) 

{ 

 CHAR Buf[PGSZ]; 

 

 memset(Buf, 0, sizeof(Buf)); 

 if (g_PwnFlag) { 

  dprintf("[+] __ClientLoadLibrary hook called\n"); 

  if (++g_HookCount == 2) { 
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   g_PwnFlag = 0; // Only fire once.. 

   ReplaceScrollBarChunk(NULL); 

  } 

 } 

 fpClientLoadLibrary(&Buf); // call original 

} 

Once we know for sure we've been called specifically from the call 

to win32k!xxxDrawScrollBar()  we can try to trigger the bug. For now, since we're just 

worried about triggering, we can just call DestroyWindow(g_hSBCtl) . This will be enough to 

free the tagSBINFO  structure from the window  The window structure itself won't be freed yet 

because there is still a reference count as it is still in use by the original call, but 

the tagSBINFO  has no such reference-counting mechanism so is freed in the process. 

At this point we've triggered the bug. Even if we don't reallocate the now-free chunk that was 

holding tagSBINFO , we will write the two disable bits to whatever is now in that freed heap 

location. The next step is to replace this freed chunk with one we want to put there, so we can 

do something more interesting than just flip a couple of bits. In order to do this, we need a bit of 

background on the desktop heap. 

 

The desktop heap 

The desktop heap is used by win32k.sys to store GUI objects associated with a given desktop. 

This includes window objects and their associated structures, like property lists, window text, 

and scrollbars. The Tarjei paper touches on this, but what's most important to note is that it's 

actually just a simplified version of the userland backend allocator that operates 

using RtlAllocateHeap()  and RtlHeapFree() . The heap is tracked by a _HEAP  structure 

like you’d expect. There is no frontend allocator, so no Low Fragmentation Heap, no Lookaside 

list, etc.  

Every time you create a desktop, a heap is created to service it. This means that we can 

actually allocate a new desktop in order to get a much "fresher" heap that we can more 

predictably manipulate. However, it is worth noting that a process running in a low-integrity 

environment is actually not allowed to create a new desktop. 

What's primarily of interest for now (we'll cover more details later about the metadata and such) 

is tracking allocations. 

 

Monitoring desktop heap allocations 

To monitor allocations and frees from the desktop heap I used the following WinDbg script: 

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
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64-bit heap monitoring 

ba e 1 nt!RtlFreeHeap ".printf\"RtlFreeHeap(%p, 0x%x, %p)\", @rcx, 

@edx, @r8; .echo ; gc"; 

ba e 1 nt!RtlAllocateHeap "r @$t2 = @r8; r @$t3 = @rcx; gu; .printf 

\"RtlAllocateHeap(%p, 0x%x):\", @$t3, @$t2; r @rax; gc"; 

 

32-bit heap monitoring 

ba e 1 nt!RtlAllocateHeap "r @$t2 = poi(@esp+c); r @$t3 = poi(@esp+4); 

gu; .printf \"RtlAllocateHeap(%p, 0x%x):\", @$t3, @$t2; r @eax; gc"; 

ba e 1 nt!RtlFreeHeap ".printf\"RtlFreeHeap(%p, 0x%x, %p)\", 

poi(@esp+4), poi(@esp+8), poi(@esp+c); .echo ; gc" 

In addition to these breakpoint scripts, because the desktop heap is actually just a simplified 

form of the userland backend allocator, we can actually leverage the !heap  command in 

WinDBG itself.  

 

Filling heap holes 

In order to exploit the bug we need to replace this recently freed tagSBINFO  chunk, but we 

also know from how these bugs are typically exploited that we'll eventually be corrupting some 

adjacent data. This gives us the fundamental requirement of predictably allocating chunks of 

interest adjacent to our corrupted structure. And in order to predict where a chunk is allocated, 

we must be in control of the entire heap layout (or as much as possible). The logical way to go 

about this is to try to fill in as many free chunks as we can so all new allocations are adjacent 

and if we need holes we can create them at predictable locations (by freeing the associated 

chunk). 

Part of this is simply understanding side effect allocations, which the WinDbg scripts above can 

help with. Tarjei mentioned most of the main objects of interest allocated on this heap in his 

win32k slides, which I found to be pretty consistent with what I was seeing. His list is: 

 Window 

 Menu 

 Hook 

 CallProcData 

 Input Context 

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_Slides.pdf
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The desktop heap is pretty interesting in that most allocations are directly tied to window 

objects, managed by thetagWND  structure, which means if we want to allocate a chunk of an 

arbitrary size (say a small size to fill a small hole), then we first need an allocated window to 

interact with. You can basically think of a window structure as an allocation interface to the 

heap. Another point of interest is that many allocations you can create through a window cannot 

subsequently be destroyed without destroying the window itself, which obviously has heap side 

effects. Lastly, let’s assume a window allows you to allocate a chunk of size N. Just for the sake 

of example, what if, for whatever reason, we need twenty allocations of size N? The actual 

things in a window that let us allocate an arbitrary size are not stored on lists. So each window 

lets you do one controlled allocate of size N. So if you need to make twenty allocations of size 

N, you must first create twenty windows and use each window to facilitate the allocation. 

There are three additional important datatypes, also allocated on this heap, that we can 

indirectly use for controlling data on the heap via window objects. I will use these pretty 

extensively for exploitation and feng shui. These are: 

1. tagPROPLIST  structures: these serve as a small enough allocation that they will fill any 

small holes we're worried about. A window containing a single tagPROPLIST  entry will 

allocate 0x10 bytes on 32-bit and 0x18 bytes on 64-bit. 

2. Window text: This is an arbitrary sized UNICODE string allocation on the desktop heap, 

which is stored in a_LARGE_UNICODE_STRING  structure embedded in 

the tagWND  structure. Note that the strName  member is a structure, not a pointer, but 

the structure will contain a pointer to an associated window text allocation. 

3. tagSBINFO  structures: the source of the vulnerability, but also contain four partially or 

fully controlled members. 

The following diagram demonstrates the relationship between these datatypes: 
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To do the initial heap filling I create a large number of tagWND  structures (by creating new 

Windows). This has the effect of filling a lot of big holes on the heap, and also gives us 

interfaces in order to do other allocations as needed. On Windows 8 and Windows 8.1 

allocating a new window results in an auto-allocation of a tagPROPLIST  structure (which you 

can observe during development using the WinDbg scripts above). On Windows 7 and earlier 

we allocate new tagPROPLIST  entries ourselves, and these serve to fill any small holes.  

At this point every Window we sprayed has no corresponding window text strings value, so we 

could still use those for arbitrary size allocations and frees as needed. Once created you can't 

actually remove an existing property list without destroying the corresponding Window, but you 

can force the list to be reallocated to accommodate a new entry, which can be used to create a 

hole at the previous location. To do this you simply need to set a new property with an identifier 

(atomKey ) that doesn't already exist in the list. 

Validating feng shui layouts 

Interestingly, the desktop heap is mapped as read-only into userland. This means that we can 

validate the feng shui layouts we're trying to create and bail out if things didn't work out. First we 

need to figure out where the userland map of the desktop heap is. This is once again described 

by Tarjei in his win32k paper. The PEB contains an undocumented structure 

called Win32ClientInfo , which is defined approximately as follows: 

typedef struct _CLIENTINFO 

{ 

 ULONG_PTR CI_flags; 

 ULONG_PTR cSpins; 

 DWORD dwExpWinVer; 

 DWORD dwCompatFlags; 

 DWORD dwCompatFlags2; 

 DWORD dwTIFlags; 

 PDESKTOPINFO pDeskInfo; 

 ULONG_PTR ulClientDelta; 

 // incomplete. see reactos 

} CLIENTINFO, *PCLIENTINFO; 

 

First the PDESKTOPINFO  structure contains the following: 

typedef struct _DESKTOPINFO { PVOID pvDesktopBase; PVOID pvDesktopLimit; 

// incomplete. see reactos } DESKTOPINFO, *PDESKTOPINFO;  

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
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The pvDesktopBase  contains the kernel address of the desktop heap, which we record. Next 

the ulClientDelta value from the Win32ClientInfo  structure contains a delta which is the 

offset between the userland mapping and the kernel mapping, which tells us the information. 

However, we don't want to have to parse the heap ourselves if we don't have to, so we ideally 

also want to be able to take a given user32 handle, like an HWND  value, and convert it to the 

address in the userland mapping, so we can actually determine where it is in relation to other 

allocations. In order to do HANDLE  lookups, we need to find a structure called gShared , which 

is normally stored in user32.dll . On Windows 7 and later this address is exported, so is easy 

to find. 

On most systems the structure is defined as follows: 

kd> dt !tagSHAREDINFO 

win32k!tagSHAREDINFO 

   +0x000 psi              : Ptr32 tagSERVERINFO 

   +0x004 aheList          : Ptr32 _HANDLEENTRY 

   +0x008 HeEntrySize      : Uint4B 

   +0x00c pDispInfo        : Ptr32 tagDISPLAYINFO 

   +0x010 ulSharedDelta    : Uint4B 

   +0x014 awmControl       : [31] _WNDMSG 

   +0x10c DefWindowMsgs    : _WNDMSG 

   +0x114 DefWindowSpecMsgs : _WNDMSG 

 

In the structure above, aheList  is a pointer to an array of handles, and 

each _HANDLEENTRY  contains a pointer to the actual kernel address of the handle. We can 

then subtract our known userland delta from it and have a usable address to investigate. 

Unfortunately, finding the gSharedInfo  data on systems earlier than Windows 7 is not so 

easy, as the symbol is not exported. Tarjei's paper states that the undocumented 

CsrClientConnectToServer  function could be used to obtain a copy of gSharedInfo , but I 

could find no working examples. One annoying hurdle with implementation is that the size of the 

structures needed by the function change between 64-bit Vista, 32-bit Vista, and 64-bit and 32-

bit Windows XP, so you can’t quite trust what you find in ReactOS from my experience.  

Once we figure out where things are mapped, we can build functions that tell us exactly where 

window objects are on the desktop heap. Then if we want to know where a corresponding 

property list or text chunk was allocated, we can just parse that structure at that location in 

userland. 
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Replacing tagSBINFO with tagPROPLIST 

Now we're finally getting closer to exploiting this. We have a way to massage the heap, a way to 

validate that our chunks are in the right positions, and we can trigger the bug, so now we can 

finally ensure the freed tagSBINFO  chunk is replaced with a tagPROPLIST  property list of our 

choosing. Note that because tagPROPLIST  is just the header of a larger list, we are able to 

match the size of the list to the scrollbar info chunk, which we'll describe shortly. It is basically 

an array of tagPROP  entries, but is called a property list; so I will use the terms array and list 

interchangeably. A tagPROPLIST  structure looks like the following on 64-bit: 

kd> dt -b !tagPROPLIST 

win32k!tagPROPLIST 

   +0x000 cEntries         : Uint4B 

   +0x004 iFirstFree       : Uint4B 

   +0x008 aprop            : tagPROP 

      +0x000 hData            : Ptr64  

      +0x008 atomKey          : Uint2B 

      +0x00a fs               : Uint2B 

 

As alluded to earlier, a property list is associated with a window. Property lists are created with 

the SetProp()  function. It works by searching for an existing property with a 

matching atomKey,  and if one isn't found, a new property entry is created within the property 

list. If no property list is found at all, one is allocated and linked into the tagWND  structure. 

So assuming we've sprayed a bug of tagWND  structures and created associated 

tagPROPLIST  entries for each one, this ends up with a layout similar to that shown below: 
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Once this is set up, we can allocate the scrollbar control we want to abuse. This will result in 

something similar to the following: 
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Then we interact with the scrollbar control, causing our hooked usermode callback to fire, which 

lets us free the tagSBINFO  structure by attempting to destroy the window. This results in a 

layout similar to the following: 
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On 64-bit, a tagSBINFO  structure is 0x28 bytes and a single entry tagPROPLIST  array is 0x18 

bytes, 0x10 bytes of which are the default tagPROP  entry. So a property list with two entries will 

be 0x28 bytes (0x8 + 0x10 + 0x10), which is a perfect fit. Let's assume we've sprayed memory 

so that we have all holes filled. We'll just need to use one window with a pre-existing property 

list and plan to add a new entry to its list immediately after freeing the tagSBINFO  (already 

illustrated in previous diagrams). What this does is free the 0x18 chunk associated with the 

original tagPROPLIST  structure, which due to heap spraying won't be adjacent to free chunks 

and therefore won't coalesce into anything to create a chunk large enough to hold the 

subsequent 0x28 byte allocation we're hoping for. Instead the recently 

freed tagSBINFO  location will be used. This scenario is illustrated below: 
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When we return from the callback we hooked, the UAF will trigger and bits will be written into 

the tagPROPLIST , specifically the cEntries  member. Originally cEntries  is 0x2, 

corresponding to the two property list entries we've created. After corruption it becomes 0xe, 

corresponding to bits three and four (counting from one) being set. 

From this point we've created a new memory corruption primitive. Any time we add a property 

list to this corrupted tagPROPLIST  entry, up to 0xc more entries, we will overwrite whatever is 

adjacent on the heap. I refer to this as stage two corruption. 

 

Property list abuse - stage two corruption 

In Udi’s blog this is really as far as the explanation went. This was described as a "traditional 

buffer overflow" from this point onwards, however in my experience it was still very difficult to go 

from this point to an arbitrary read/write primitive or a way to get code execution. Let's revisit 

the tagPROPLIST  structure on 64-bit: 

kd> dt -b !tagPROPLIST 

win32k!tagPROPLIST 

   +0x000 cEntries         : Uint4B 

   +0x004 iFirstFree       : Uint4B 
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   +0x008 aprop            : tagPROP 

      +0x000 hData            : Ptr64  

      +0x008 atomKey          : Uint2B 

      +0x00a fs               : Uint2B 

 

Stage one has left us with a corrupted tagPROPLIST  array that allows us to write 

additional tagPROP  structures. There are only two members in a tagPROPLIST  : 

 cEntries : Indicates the total number of entries the list can hold. 

 iFirstFree : Indicates the index of the first free entry. A full list (meaning a new one 

should be allocated) is indicated by iFirstFree == cEntries . 

When a new property entry is being inserted into a list, a function is first called to scan every 

entry up until theiFirstFree  index is hit. At no point is there a check to see if iFirstFree  is 

greater than cEntries  during this logic. If the corresponding atomKey  isn't found in the list, 

then a check is done to ensure that iFirstFree != cEntries . If true then a new entry is 

inserted at index iFirstFree . If the size test was false (meaning iFirstFree == 

cEntries ) then a new list that includes space for the new entry will be allocated, at which point 

the list is copied over and the new entry is added. 

The tagPROP  structures are associated with the SetProp()  function. The hData  member 

corresponds to the HANDLE hData  argument of SetProp() . It is a process-specific value that 

is simply identified by the atomKey member. Fortunately for us, because it is process-specific 

we can provide any value we want - it is simply opaque data as far as the kernel is concerned. 

On 64-bit this gives us eight bytes of control, and on 32-bit four bytes. 

The atomKey  member corresponds to the LPCTSTR lpString  argument. As per the MSDN 

documentation for SetProp() , the caller can pass in either a pointer to a string or a 16-bit 

atom value. In the case of a string being passed in, this will be automatically converted to an 

atom prior to actually being stored in the property list. Because we can effectively pass any 

atom value into SetProp(),  this gives us the ability to control these two bytes as well; 

however, there are some constraints. If we're adding a new property list to an array, the unique 

identifier of the entry is the atomKey . Thus when corrupting data we can never repeat the 

same atomKey , otherwise when setting a new entry, it will replace the old entry with the 

matching key. Finally, the fs  member is not controlled by us and is set to 0 for 

corresponding atomKey  values < 0xBFFF, which correspond to integer atoms. 

The fs  member is set to 2 for atomKey  values >= 0xC000. 

One more point to note is that you might have noticed that the tagPROP  is only 0xc bytes. This 

structure ends up being aligned to 0x10 bytes on 64-bit, so we also end up with an additional 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms633568(v=vs.85).aspx
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four bytes that aren't written and so can't be corrupted when inserting a tagPROP  entry. The 

last important point is that the start of a chunk holding a tagPROPLIST list begins with the 0x8 

bytes of data defining the array size, meaning that each new tagPROP  entry will always be 

written to an address ending with 0x8. 

So for every tagPROP  we insert, on 64-bit, this gives us: 

* Offset 0x0: 8 bytes of arbitrary controlled data (hData) 

* Offset 0x8: 2 bytes of almost controlled data (atomKey) 

* Offset 0xa: 2 bytes of non-controlled data (fs) 

* Offset 0xc: 4 bytes of non-modified data (padding) 

This is far better than two bits, but it's still not great. Unless we can overwrite something with the 

first eight bytes of data from the fully controlled hData  member, we'll be quite limited. If we 

need to write to some member deep within an adjacent structure, we also can't really avoid 

uncontrolled corruption of certain values. In spending quite a bit of time looking at various 

objects on the desktop heap, with the above corruption constraints in mind, the only way I could 

think of to leverage this to build an arbitrary read/write primitive was to corrupt 

the strName  member of an adjacent tagWND  structure, which is a structure of the 

type _LARGE_UNICODE_STRING : 

kd> dt !_LARGE_UNICODE_STRING 

win32k!_LARGE_UNICODE_STRING 

   +0x000 Length           : Uint4B 

   +0x004 MaximumLength    : Pos 0, 31 Bits 

   +0x004 bAnsi            : Pos 31, 1 Bit 

   +0x008 Buffer           : Ptr64 Uint2B 

If we could corrupt the Buffer  member of this structure we could then operate on the window 

string to read and write up to MaximumLength  bytes from the given address. So this is what I 

did. You might also recognize this structure from the earlier section on how to create chunks on 

the desktop heap of arbitrary size and data, as it is the exact same thing that can be used there. 

 

Now that we understand how we can use tagPROPLIST  entries to corrupt data and what parts 

we control, and most importantly what constraints we are faced with, this is where the 

techniques for 32-bit and 64-bit diverge. What I did first on 64-bit ended up not working on 32-

bit. 
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What I do next is quickly turn stage two corruption (aka writing with tagPROP  structs) into yet 

another corruption primitive that lets us write fully controlled data, which I refer to as stage three 

corruption. 

 

Building a read/write primitive - Stage three corruption 
 

64-bit 

The plan is to corrupt the strName  member of an adjacent tagWND  struct. We already know 

it’s a _LARGE_UNICODE_STRING , but let's take a look at the tagWND  structure in more detail to 

see what this thing we want to target actually looks like: 

kd> dt !tagWND 

win32k!tagWND 

   +0x000 head             : _THRDESKHEAD 

   +0x028 state            : Uint4B 

   +0x028 bHasMeun         : Pos 0, 1 Bit 

   +0x028 bHasVerticalScrollbar : Pos 1, 1 Bit 

   +0x028 bHasHorizontalScrollbar : Pos 2, 1 Bit 

[SNIPPED FLAGS] 

   +0x028 bDestroyed       : Pos 31, 1 Bit 

   +0x02c state2           : Uint4B 

[SNIPPED FLAGS] 

   +0x02c bWMCreateMsgProcessed : Pos 31, 1 Bit 

   +0x030 ExStyle          : Uint4B 

   +0x030 bWS_EX_DLGMODALFRAME : Pos 0, 1 Bit 

   +0x030 bUnused1         : Pos 1, 1 Bit 

   +0x030 bWS_EX_NOPARENTNOTIFY : Pos 2, 1 Bit 

[SNIPPED FLAGS] 

   +0x030 bUIStateFocusRectHidden : Pos 31, 1 Bit 

   +0x034 style            : Uint4B 

   +0x034 bReserved1       : Pos 0, 16 Bits 

[SNIPPED FLAGS] 

   +0x034 bWS_POPUP        : Pos 31, 1 Bit 

   +0x038 hModule          : Ptr64 Void 

   +0x040 hMod16           : Uint2B 

   +0x042 fnid             : Uint2B 

   +0x048 spwndNext        : Ptr64 tagWND 

   +0x050 spwndPrev        : Ptr64 tagWND 

   +0x058 spwndParent      : Ptr64 tagWND 

   +0x060 spwndChild       : Ptr64 tagWND 
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   +0x068 spwndOwner       : Ptr64 tagWND 

   +0x070 rcWindow         : tagRECT 

   +0x080 rcClient         : tagRECT 

   +0x090 lpfnWndProc      : Ptr64     int64  

   +0x098 pcls             : Ptr64 tagCLS 

   +0x0a0 hrgnUpdate       : Ptr64 HRGN__ 

   +0x0a8 ppropList        : Ptr64 tagPROPLIST 

   +0x0b0 pSBInfo          : Ptr64 tagSBINFO 

   +0x0b8 spmenuSys        : Ptr64 tagMENU 

   +0x0c0 spmenu           : Ptr64 tagMENU 

   +0x0c8 hrgnClip         : Ptr64 HRGN__ 

   +0x0d0 hrgnNewFrame     : Ptr64 HRGN__ 

   +0x0d8 strName          : _LARGE_UNICODE_STRING 

   +0x0e8 cbwndExtra       : Int4B 

   +0x0f0 spwndLastActive  : Ptr64 tagWND 

   +0x0f8 hImc             : Ptr64 HIMC__ 

   +0x100 dwUserData       : Uint8B 

   +0x108 pActCtx          : Ptr64 _ACTIVATION_CONTEXT 

   +0x110 pTransform       : Ptr64 _D3DMATRIX 

   +0x118 spwndClipboardListenerNext : Ptr64 tagWND 

   +0x120 ExStyle2         : Uint4B 

   +0x120 bClipboardListener : Pos 0, 1 Bit 

[SNIPPED FLAGS] 

   +0x120 bChildNoActivate : Pos 11, 1 Bit 

 

In the 64-bit structure above we can see that the _LARGE_UNICODE_STRING  structure we want 

to overwrite starts at offset 0xd8. You'll also notice a significant number of members earlier in 

the structure. Originally I had hoped to just trample this carefree, but there are numerous 

pointers in _THRDESKHEAD  that we need to stay sane, and unfortunately we can't actually 

control what we write there because of the constraints we already discussed. 

The _THRDESKHEAD  structure looks like: 

kd> dt !_THRDESKHEAD 

win32k!_THRDESKHEAD 

   +0x000 h                : Ptr64 Void 

   +0x008 cLockObj         : Uint4B 

   +0x010 pti              : Ptr64 tagTHREADINFO 

   +0x018 rpdesk           : Ptr64 tagDESKTOP 

   +0x020 pSelf            : Ptr64 UChar 
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Not only does clobbering _THRDESKHEAD  cause us problems, but let's revisit our alignment 

constraints. Our new tagPROP  entry at whatever offset we are writing it will always end up 

writing directly over top of the exact start of the _LARGE_UNICODE_STRING  structure: 

win32k!_LARGE_UNICODE_STRING 

   +0x000 Length           <-- hData (fully controlled) would 

overwrite this 

   +0x004 MaximumLength    <-- and this 

   +0x004 bAnsi            <-- and this 

   +0x008 Buffer           <-- atomKey and fs (only partially 

controlled) would overwrite this 

 

It's specifically the Buffer  pointer we want to overwrite in order to access arbitrary memory 

however, so even if we could safely clobber the rest of the structure, we wouldn't control the one 

pointer we need to control.  

The answer to our inability to corrupt arbitrary data is to turn the tagPROPLIST  corruption into 

an entirely different corruption mechanism.  

On versions of Windows after XP, the userland backend allocator (and so kernel desktop heap) 

chunk headers (aka _HEAP_ENTRY  structures) are stored in-band and are located right before 

the actual contents of the chunk. The Desktop heap itself is managed by a _HEAP  structure, 

which tracks the various free and in use chunks. 

A _HEAP_ENTRY  is defined as follows: 

kd> dt !_HEAP_ENTRY 

ntdll!_HEAP_ENTRY 

   +0x000 PreviousBlockPrivateData : Ptr64 Void 

   +0x008 Size             : Uint2B 

   +0x00a Flags            : UChar 

   +0x00b SmallTagIndex    : UChar 

   +0x00c PreviousSize     : Uint2B 

   +0x00e SegmentOffset    : UChar 

   +0x00f UnusedBytes      : UChar 

The chunk header is 0x10 bytes total. The first eight bytes, 

called PreviousBlockPrivateData , are used to hold actual chunk data from a previous 
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chunk if the requested size spilled over the normal 0x10 chunk alignment by <= 8 bytes. This is 

explained briefly in a nice Leviathan blog entry, as well as other earlier userland heap articles. 

The Size  and PreviousSize  members represent the chunk size of the current and previous 

chunks, divided by 0x10. The Flags  member is used to indicate if a given chunk is free, etc. 

If _HEAP_ENTRY  security is enabled in the corresponding _HEAP  structure that manages the 

heap, then the SmallTagIndex  entry will hold a XORed checksum value of some of the 

expected values in the chunk. 

Although alignment hasn't been favorable to us so far, it is actually in this situation. If you recall 

the tagPROPLIST  is always at least 0x18, and then an extra 0x10 bytes for every 

new tagPROP  entry added. For a two-entry property list of size 0x28 this means it will actually 

be placed into a chunk of 0x20 bytes and those PreviousBlockPrivateData  spillover bytes 

are used from the adjacent chunk. And this means that when we add a third entry and corrupt 

whatever is immediately adjacent, the eight bytes of hData  bytes we control will fit exactly over 

the top of the more interesting parts of the _HEAP_ENTRY  structure. 

What we want to do is abuse this so that we can somehow write arbitrary data over the top of 

the Buffer  address. First we modify our heap layout so that adjacent to our 

corrupted tagPROPLIST  chunk we have a small chunk containing a text string associated with 

some window we control during setup. I refer to this as an overlay chunk. Adjacent to this 

overlay chunk we place the tagWND  structure we actually want to corrupt. This is illustrated 

below. Note that I've begun to omit the earlier sprayed chunks to save size, so these should 

now be taken as implied. 

 

Next we insert a third tagPROP  entry into our corrupted tagPROPLIST  list, which overwrites 

the last eight bytes of the _HEAP_ENTRY  and the first eight bytes of whatever was in the overlay 

chunk. When we modify the _HEAP_ENTRY  we specifically modify the Size  parameter of the 

https://www.leviathansecurity.com/blog/understanding-the-windows-allocator-a-redux/
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overlay chunk to be significantly larger than the actual chunk size, making it large enough that it 

will include (or overlay) the adjacent tagWND  structure. 

The goal is now to free the overlay chunk we just corrupted so that the heap algorithm places it 

on a free list associated with a size that is larger than the chunk actually is, and then reallocates 

it for use with new window text, which we will fully control. However, this causes a small 

problem we first need to deal with. When the chunk is being freed, the heap algorithm will try to 

walk ahead on the heap to the next adjacent chunk, which it determines using the 

corrupted Size  member. It will try to determine if this adjacent chunk is free and if so will 

attempt to coalesce it. We want to make sure we control whatever it tries to reference, and that 

a flag indicating that the chunk is busy is set. We do this by again slightly modifying our heap 

layout. This time we place a buffer of fake heap headers all with the busy flag set and also 

with PreviousSize  values that correspond to the corrupted Size , which we can do simply by 

using another window text allocation associated with yet another window  This new layout is 

illustrated as follows: 

 

Now finally we can free the corrupted overlay chunk by updating the associated window with a 

larger string than was originally allocated (0x10 bytes in the diagrams). This will first free the 

corrupted chunk, placing it on the free list. However, the size was corrupted, and now the freed 

chunk is advertised as much larger than it actually is. So we can actually just force this newly 

freed chunk to be reused to service our new chunk allocation of larger size. This results in our 

string data being written to the chunk, which we can then use to corrupt all of the 

adjacent tagWND structure with arbitrary data. This is illustrated in the diagrams below: 
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So that facilitates what I describe as stage three corruption. We can technically now overwrite 

the strName.Buffer  pointer with any data we want. However, we still have the issue of 

corrupting everything else in tagWND  beforehand. But it turns out this isn't a problem, because 

the desktop heap is mapped to userland! So before we corrupt everything, we just read all of 

the contents out of the target tagWND  structure, modify the strName  structure contents to 

anything we want, and then send all that data through as our text update! 

Not only does this give us an arbitrary read or write primitive via the strName  structure, but 

updating strName  is repeatable because of the way the logic of window text updating works. 

As long as the string you're writing into the buffer is <= the MaximumLength  member, it will 

continue to reuse the same chunk. So every time we want to change the address 

of strName  to read or write somewhere new, we re-update the overlay chunk with a new string 

and resupply our arbitrary data. The repeatability is illustrated in the diagram below. Note that I 

once again zoom in the graphic for greater granularity on what is being corrupted each time: 
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This means we only end up corrupting two additional things (aside from the 

original tagPROPLIST  entry): 

1. The overlay chunk heap header. We can actually read this before we corrupt it, so we 

know how to fix it up after the fact. Funnily enough, we can even fix up the chunk by 

rewriting the 3rd tagPROPLIST  entry, as long as we send through the atomKey  we 

used in order to corrupt it in the first place! 

2. The strName  structure, which we can easily fix by a subsequent write of window text 

data. We can just set this all back to NULL when we're done. 

So now if we want to read some amount of bytes from anywhere in memory, we query the 

window text, using InternalGetWindowText() , that is associated with the target window that 

has the corrupted strName  entry. We can read up to the number of bytes we placed into 

the Length  member. Similarly, if we want to write to an arbitrary location in memory, we update 

that corrupted window’s text, using NtUserDefSetText  with data equal to or less than the fake 

size we placed into the MaximumLength  member, and it will reuse the existing buffer, which 

just points wherever we want. 

Windows 8 and 8.1 heap encoding 

Although the backend allocator in userland started using heap encoding as of Windows Vista, 

the desktop heap never bothered enabling it until Windows 8 and later. So this causes a hurdle 

when we're doing the overlay chunk overwrite that was described above. However, it turns out 

the _HEAP  structure used to define the heap also holds the actual cookie used to encode all 

heap headers, so we can just read this out of the userland mapping of the desktop heap and 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms633523(v=vs.85).aspx
http://blogs.technet.com/b/srd/archive/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities.aspx
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then ensure that the overlay chunks header is properly encoded, by mimicking the logic 

reversed from the allocator, and the allocator won't complain. 

32-bit  

The first and most important thing to note about 32-bit is that the tagPROP  structure is now a 

total of 0x8 bytes (instead of 0xc bytes on 64-bit), and the hData  member we control is now 

only 0x4 bytes (rather than 0x8 bytes on 64-bit). Also there is no longer any additional padding 

(instead of the 0x4 bytes of padding on 64-bit), as the whole structure fits neatly within 0x8 

bytes. But this means that we can't completely corrupt an adjacent chunk header as we would 

only partially control the data. On some versions of Windows this would be okay, as we can 

control the most important fields, but on Windows 8 and 8.1 where the header is encoded, we 

will end up overwriting a part of the header with the fs  member in an unsafe way. On 32-bit 

the _HEAP_ENTRY  header looks similar, but is missing the 

PreviousBlockPrivateData  entry. 

We still can't corrupt every part of tagWND  because we inevitably break pointers. But I still didn't 

find any new interesting objects to target and because _LARGE_UNICODE_STRING  worked so 

well on 64-bit I was kind of set on using it for 32-bit.  

My idea was that if we could corrupt the iFirstFree  member (recall, the index of the first free 

entry in the property list) of a tagPROPLIST  structure in such a way that we could increase the 

index, we could point it to some adjacent location further on the heap. We could, for instance, 

try to point it over the top of the strName  member of the adjacent tagWND  struct. The following 

diagram illustrates this general idea: 

 

To make things clear now that we're dealing with two tagPROPLIST  structures, I'll call the UAF 

property list 'list A' and the other list 'list B'. We need to know exactly what part of 

our tagPROP  inserted into 'list A' will overwrite the iFirstFree  entry of 'list B'. We also have to 

keep in mind that we're only writing eight bytes at a time, so we're going to have to at least 
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insert one additional tagPROP  into 'list A', as the first will corrupt the adjacent heap header, and 

only the second will hit the 'list B' tagPROPLIST  values. Depending on the OS and chunk sizes 

in play, this may vary, and I had to accommodate various layouts in my exploit. For now let's 

assume that we need to insert only two to corrupt 'list B' though. What exactly we'll be 

corrupting is shown in the following diagram. Note that the first tagPROPLIST  in the diagram is 

not broken out into its individual members, so tagPROP[0]  is implied. However, in the second 

tagPROPLIST  I have broken out the internals to show what we're corrupting, which is why 

the tagPROP[0]  entry is shown: 

 

First we note that if we're writing eight bytes for each tagPROP , then that means we'll only 

partially control what is written over iFirstFree  (because it will come 

from atomKey  and fs  members), which is the value we're most concerned about. Because we 

fully control the two least significant bytes of the value with our atomKey  it actually works out 

okay, as the value will be small enough that fs  will be 0. So we will use our hData  value to 

overwrite cEntries  with some sane value, and use atomKey  to point iFirstFree  where we 

want in the target tagWND . We want to overwrite the strName.Buffer  pointer 

in tagWND  specifically. If we couldn't overwrite the Length  and MaximumLength  values 

directly, that would be okay, because we could pre-allocate a string for the target window to 

ensure the lengths are already set to some large value. 
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Let's look at the tagWND  struct on 32-bit to see what we've got. Note that this time I'm using 

the -b  switch so we can easily compute the offset of the Buffer  embedded in 

the strName  struct. 

kd> dt -b !tagWND 

win32k!tagWND 

   +0x000 head             : _THRDESKHEAD 

      +0x000 h                : Ptr32  

      +0x004 cLockObj         : Uint4B 

      +0x008 pti              : Ptr32  

      +0x00c rpdesk           : Ptr32  

      +0x010 pSelf            : Ptr32  

   +0x014 state            : Uint4B 

   +0x014 bHasMeun         : Pos 0, 1 Bit 

[SNIPPED FLAGS] 

   +0x014 bDestroyed       : Pos 31, 1 Bit 

   +0x018 state2           : Uint4B 

[SNIPPED FLAGS] 

   +0x018 bWMCreateMsgProcessed : Pos 31, 1 Bit 

   +0x01c ExStyle          : Uint4B 

   +0x01c bWS_EX_DLGMODALFRAME : Pos 0, 1 Bit 

[SNIPPED FLAGS] 

   +0x01c bUIStateFocusRectHidden : Pos 31, 1 Bit 

   +0x020 style            : Uint4B 

   +0x020 bReserved1       : Pos 0, 16 Bits 

[SNIPPED FLAGS] 

   +0x020 bWS_POPUP        : Pos 31, 1 Bit 

   +0x024 hModule          : Ptr32  

   +0x028 hMod16           : Uint2B 

   +0x02a fnid             : Uint2B 

   +0x02c spwndNext        : Ptr32  

   +0x030 spwndPrev        : Ptr32  

   +0x034 spwndParent      : Ptr32  

   +0x038 spwndChild       : Ptr32  

   +0x03c spwndOwner       : Ptr32  

   +0x040 rcWindow         : tagRECT 

      +0x000 left             : Int4B 

      +0x004 top              : Int4B 

      +0x008 right            : Int4B 

      +0x00c bottom           : Int4B 

   +0x050 rcClient         : tagRECT 

      +0x000 left             : Int4B 
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      +0x004 top              : Int4B 

      +0x008 right            : Int4B 

      +0x00c bottom           : Int4B 

   +0x060 lpfnWndProc      : Ptr32  

   +0x064 pcls             : Ptr32  

   +0x068 hrgnUpdate       : Ptr32  

   +0x06c ppropList        : Ptr32  

   +0x070 pSBInfo          : Ptr32  

   +0x074 spmenuSys        : Ptr32  

   +0x078 spmenu           : Ptr32  

   +0x07c hrgnClip         : Ptr32  

   +0x080 hrgnNewFrame     : Ptr32  

   +0x084 strName          : _LARGE_UNICODE_STRING 

      +0x000 Length           : Uint4B 

      +0x004 MaximumLength    : Pos 0, 31 Bits 

      +0x004 bAnsi            : Pos 31, 1 Bit 

      +0x008 Buffer           : Ptr32  

   +0x090 cbwndExtra       : Int4B 

   +0x094 spwndLastActive  : Ptr32  

   +0x098 hImc             : Ptr32  

   +0x09c dwUserData       : Uint4B 

   +0x0a0 pActCtx          : Ptr32  

   +0x0a4 pTransform       : Ptr32  

   +0x0a8 spwndClipboardListenerNext : Ptr32  

   +0x0ac ExStyle2         : Uint4B 

   +0x0ac bClipboardListener : Pos 0, 1 Bit 

[SNIPPED FLAGS] 

   +0x0ac bChildNoActivate : Pos 11, 1 Bit 

We see that strName  is at offset 0x84 and Buffer  is at offset 0x8c specifically. Remember 

we're indexing from a 0x8 byte aligned array of tagPROP  entries and we can only write 0x8 

bytes. So we can easily work out that if we chose to make the iFirstFree  index to offset 0x88 

in the tagWND  we would point at MaximumLength  (overwritten by hData ) and our write 

wouldn't work because we'd only control two bytes of Buffer , whereas we want this to be our 

arbitrary read/write primitive, so this isn't acceptable. If we try to write to the next index and point 

to 0x90 then we'll be overwriting cbwndExtra  (with hData ), which isn't what we're after. 

We need to think back to earlier and what we control for the purposes of doing heap feng shui, 

and then look at these in tagWND  to see if anything is at interesting offsets we might control. At 

offset 0x70 in the tagWND  struct we see the pSBInfo . This is divisible by 0x8 so we know that 

we would actually be able to overwrite this pointer with the hData  portion of our fake tagPROP . 
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What if we overwrote pSBInfo  to point directly atstrName  in the same tagWND  struct? Maybe 

we could use the scrollbar API to corrupt strName  to get our primitive. 

The pSBInfo  member points to a tagSBINFO  struct, which you might recall is the structure 

type used way back during the very first use-after-free. 

kd> dt -b !tagSBINFO 

win32k!tagSBINFO 

   +0x000 WSBflags         : Int4B 

   +0x004 Horz             : tagSBDATA 

      +0x000 posMin           : Int4B 

      +0x004 posMax           : Int4B 

      +0x008 page             : Int4B 

      +0x00c pos              : Int4B 

   +0x014 Vert             : tagSBDATA 

      +0x000 posMin           : Int4B 

      +0x004 posMax           : Int4B 

      +0x008 page             : Int4B 

      +0x00c pos              : Int4B 

 

If we remember, the WSBflags  don't give us a lot of control, but we know at least that if we 

enable either scrollbar ones will be set, and if we disable an active scrollbar zeroes will be set. 

The flags member isn't really ideal for setting arbitrary values, but by reversing some related 

functionality we can see that if we're not changing that state of the scrollbar, those flags won't 

be changed. The values inside the tagSBDATA  structure seem more interesting though. If we 

look at the SetScrollInfo()  documentation we can get a good understanding of what all of 

these values represent. It looks like we can set these parameters in a SCROLLINFO  struct that 

we pass to SetScrollInfo() . As long as the adjacent window is a scrollbar control we are 

corrupting, it will operate on the pSBInfo  pointer directly (otherwise it would send a special 

window message to the associated scrollbar control window). It appears we can control 

the posMin  and posMax  values without any restrictions. The Page  and pos  members are a 

little more finicky as they are expected to be within established range limits, so let’s try to avoid 

them for now. We will pass the SIF_RANGE  flag in the SCROLLINFO struct to indicate where we 

want to write the min and max values specifically. 

We want to overwrite Buffer  with arbitrary data, which means we want posMin  to overlap it, 

so we can overwrite pSBInfo  to point to strName.MaximumLength . As long as we don't 

enable or disable the scrollbar, the WSBflags member won't be written to, which keeps 

strName.MaximumLength  intact. This means that whatever we placed in posMin , 

via nMin  from SCROLLINFO , will be written to Buffer,  and posMax  will be written over 

https://msdn.microsoft.com/en-us/library/windows/desktop/bb787595%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb787537(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb787529(v=vs.85).aspx


 

NCC Group | Page 35 © Copyright 2015 NCC Group  

whatever is next, which is cbwndExtra . This isn't a big deal; as with 64-bit, we can pre-read 

the value and fix it up later. The general concept of the overlap is illustrated below: 

 

So let's walk through the 32-bit attack with diagrams. First, let's take a step back and look at a 

diagram showing the relevant chunks and heap layout before we corrupt anything beyond the 

initial use-after-free. I've now included even more granular info so it's clear exactly what we're 

doing. 
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Next we insert two additional entries into 'list A', which will corrupt data adjacent to 'list A' thanks 

to the use-after-free corruption, and allow us to point 'list B's iFirstFree  entry to pSBInfo . 

Note that we'll also corrupt the value adjacent to pSBInfo , but again we can pre-read it and fix 

it up later. 
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Then we insert a new tagPROP  into 'list B' with an identifier that doesn’t already exist in the list 

resulting in the new entry being inserted at the next free index, which corrupts pSBInfo  to point 

at strName.MaximumLength  in the same tagWND  struct. 
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Finally we update the scrollbar structure to corrupt the Buffer  member: 
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Remember that unlike the 64-bit case we're not actually corrupting the length values 

in strName , so we need them to be sane already. We can do this by pre-allocating a text buffer 

with a decently large length for the window, so that the values are already useful. Then 

whenever we want to read or write a new value in kernel memory at a different address, we 

simply call SetScrollInfo()  on the target window and update the location of Buffer,  and 

then use the window text API on the target window. 

That's it! We now have our repeatable arbitrary read/write primitive on 32-bit! 

Getting code exec 

Everything from now on simply assumes we have an arbitrary read/write primitive. So if I say 

leak/read X or overwrite Y, it is just being done with the primitives we have built in the earlier 

corruption stage. Mostly this is the same on both architectures. All we really have left to do is 

overwrite a function pointer and redirect it to a payload somewhere. The most common way to 
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do this (popularised by reversemode) is to overwrite the second entry in 

nt!HalDispatchTable , which normally holds 

the HalQuerySystemInformation()  function. Then you can force the pointer to be called by 

calling NtQueryInternalProfile()  from userland. 

We need to leak the base address of the kernel in order to find nt!HalDispatchTable . To do 

this I use the standard NtQuerySystemInformation()  to fetch module information from 

which you can pull a base address. 

 // 11 corresponds to SystemModuleInformation class, which is 

undocumented... 

 rc = NtQuerySystemInformation((SYSTEM_INFORMATION_CLASS)11, 

pModuleInfo, 0x100000, NULL); 

 

Then I open a local copy of ntoskrnl.exe  and look up the nt!HalDispatchTable  offset, 

which I can then easily apply to the leaked base address. I then use the read primitive to read 

the original HaliQuerySystemInformation()address (which is not exported) so that it can 

be fixed up later, and then use the write primitive to corrupt the function pointer with the address 

of shellcode (in userspace or kernelspace; more on this later). This is the same on both 64-bit 

and 32-bit aside from the size of the reads and writes. 

 

Bypassing SMEP 

SMEP support was introduced on Windows 8 and 8.1, and technically some security products 

enforce it on Windows 7, so we can assume it's there as well. It prevents us from executing 

code in userland while operating with kernel privileges, which makes overwriting 

the nt!HalDispatchTable  entry to point directly into userland much less useful. So instead 

we want to point it somewhere in kernelspace that we control, that we can use to disable SMEP 

by writing to cr4  and only then jump into userland. MWR documented an interesting trick on 

64-bit that involves self-mapping page table entries that let you work out a valid kernel address 

for an arbitrary virtual address. As long as you have a write primitive you can thus write directly 

into the page table entry and modify the bits. I was able to adapt this trick to 32-bit fairly easily, 

although the indices differ between PAE and non-PAE systems. 

The most obvious way to do this would be to map an address in userland and then use the write 

primitive to mark the page table entries as being supervisor rather than user. This is what I tried 

first; it worked up until Windows 8 and then I ran into an interesting problem. The desktop 

window manager (dwm.exe ) on Windows 8 and later regularly scans through windows on 

desktops and queries their names for some reason (which I didn’t investigate). It does this 

without actually sending them a window message that you can ignore, but instead is able to find 

http://www.reversemode.com/index.php?option=com_remository&Itemid=2&func=startdown&id=51
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/
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the window handle and calls GetInternalWindowText() . So the problem is that we are using 

the strName  member of the window structure to point at the page table entry of our memory 

mapping containing our shellcode, which is private to our processes page table. 

When dwm.exe  asks the kernel to give it the name, the wrong page table entries will be present 

and so the kernel will see that the strName.Buffer  address is not NULL and then 

dereference the address, which will be invalid. This will BSOD the machine. 

I worked around this by accepting that dwm.exe  might query us, and so opting to use a kernel 

address to hold the payload instead. This way the associated page table entry with that address 

will always be valid no matter what process is currently loaded. I chose to place it onto the 

desktop heap since I was already able to compute the kernel address of it using the previously-

mentioned approach. We can still use the self-mapping page table entry trick, but in this case 

the page table is already marked as supervisor, it just won't be marked as executable. So 

instead we just set the executable bit. 

So the steps are quite easy: 

1. Create a window text buffer containing our stage one payload and compute the kernel 

address. 

2. Use the self-mapping trick to compute the page table entry for the kernel address from 

the previous step. 

3. Use our write primitive to set the executable bit of the page table entry. 

4. Overwrite nt!HalDispatchTable  to the stage one kernel address. 

5. Call NtQueryInternalProfile()  to jump to the payload. 

6. Disable SMEP in cr4 and jump to the stage two userland payload. 

7. Execute the stage two userland payload to elevate privileges and return. 

8. Restore SMEP in cr4 to prevent patchguard from complaining and return cleanly. 

 

Bypassing Low Integrity Sandbox 

On Windows 8.1 we might have an additional problem, which is that the 

NtQuerySystemInformation()  function now has checks for low integrity SIDs, which means 

only medium integrity and above can leak the address of kernel bases. This is actually quite 

easy to get around using the well-known sidt  trick. We store the address of the IDT into 

userland (which is unprivileged) and then use the read primitive to read whatever IDT index we 

want. Most of them point into the kernel, so we can leak the address of an interrupt handler in 

the kernel, and then do the exact same PE search. 

Once we have the base, we can do the same computation of 

the nt!HalDispatchTable  address. 
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Normally the way you could do this type of lookups is to open ntokrnl.exe  from the 

filesystem and then resolve the symbol offset locally and add it to the leaked kernel base. 

However, in a hardened sandbox this is not ideal because there might be filesystem restrictions 

imposed preventing you from reading C:\windows\system32\ntoksrnl.exe  for instance. To work 

around this type of restriction we can use our leak primitive to parse the symbols we need from the 

kernel PE header in memory.  

 
 

Conclusion 

That’s all. If you’ve made it this far I genuinely appreciate you taking the time to read everything! In 

the end, using the techniques described in this write up, I was able to develop a reliable exploit 

targeting both 32-bit and 64-bit on XP, Vista, 7, 8, 8.1, and Server 2012. On Windows 2003 and 

2008 by default theming is not used, and it turns out that theming is required for the usermode 

callback to hook; so I was unable to exploit these systems unless theming was explicitly enabled. 

The process of exploitation was quite complicated and there were many hurdles to overcome, but it 

also prompted a lot of interesting findings, a ton of learning, and was a great way to validate and 

more thoroughly understand what many other public researchers hint at in their papers. 

There is only one mitigation to stop this type of win32k.sys vulnerabilities to my knowledge, which 

the Google Chrome sandbox uses, which is to effectively disable win32k syscalls at runtime. 

As always I appreciate any feedback or corrections.  If I described some technique and didn’t 

adequately provide credit I would also appreciate knowing so I can update the entry. You can contact 

me via twitter @fidgetingbits or via email: aaron<dot>adams<at>nccgroup<dot>trust. 

 

 

https://code.google.com/p/chromium/issues/detail?id=365160
https://code.google.com/p/chromium/issues/detail?id=365160
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