

© Copyright 2015 NCC Group

An NCC Group Publication

Exploiting the win32k!xxxEnableWndSBArrows

use-after-free (CVE 2015-0057) bug on both 32-bit

and 64-bit

Prepared by:

Aaron Adams

NCC Group | Page 2 © Copyright 2015 NCC Group

tl;dr

Earlier this year I worked on an exploit for an interesting use-after-free vulnerability in

win32k.sys (CVE-2015-0057) and was able to develop a reliable exploit on both 32-bit and 64-

bit, affecting XP through Windows 8.1 (with a few exceptions). This writeup describes in detail

how I approached exploitation on both architectures, which ended up being somewhat different.

I also describe how exploitation works on Windows 8.1 with SMEP and in a low integrity

environment.

The post is quite long, but I try to provide a lot of detail to demonstrate what is involved in

exploiting this bug instead of glazing over details, although I do still glaze over some. Hopefully

the level of detail is helpful.

Introduction

On February 10, 2015, Microsoft released MS15-10 to address a number of vulnerabilities. The

bug was found by Udi Yavo of enSilo. Udi released a nice analysis of the vulnerability on

the breaking malware blog. I recommend reading it to better understand the bug, although I do

try to explain most of the details here, as I had to overcome a few hurdles to get it to trigger.

This bug was really interesting to exploit, but there are a lot of details omitted from the blog post

by Udi, which he acknowledges:

Responsible disclosure: although this blog entry is technical, we

won’t reveal any code, or the complete details, to prevent any tech

master from being able to reproduce an exploit.

As an added bonus to exploiting this bug we get to evolve into our next Pokémon form: tech

wizard. I want to give Udi credit for finding the bug, providing the information he did, and

exploiting the bug, which he demonstrates on his blog. It was really helpful.

I had never exploited a win32k.sys vulnerability before, and was not familiar with usermode

callbacks or many of the APIs I was using, so I would also like acknowledge the amazing

resources made available online by a few well-known security researchers: Skywing, Tarjei

Mandt, Alex Ionescu, j00ru, etc. All of these people deserve massive kudos for providing so

much technical information publicly. One of the papers I used extensively was Tarjei Mandt’s

Win32k.sys exploitation paper. I highly recommend reading that if you have no familiarity with

win32k.sys.

Since I wrote my exploit, a nice reverse-engineered exploit was made available for CVE-2015-

1701, which is useful for seeing an actual code example of how to hook usermode callbacks.

Kudos to those who reversed that and made it available.

https://technet.microsoft.com/library/security/MS15-010
http://breakingmalware.com/vulnerabilities/one-bit-rule-bypassing-windows-10-protections-using-single-bit/
https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
https://github.com/hfiref0x/CVE-2015-1701
https://github.com/hfiref0x/CVE-2015-1701

NCC Group | Page 3 © Copyright 2015 NCC Group

It’s probably worth noting that most of my analysis below was done on a Windows 7 installation,

because it appears to be the only version that has corresponding symbols available for most of

the win32k.sys structures. Microsoft pulled the information out again as of 8, for an unknown

reason.

Lastly I want to say that the way I approach exploiting this bug is quite complicated. It’s entirely

possible that there is a much easier way to do it that I just overlooked. I’d love to hear if

someone did it a different way. Either way I hope what’s described is still useful for people

researching win32k.sys bugs.

The bug

The following shows the, fairly subtle, bug when you look at it just in the disassembly of

win32k!xxxEnableWndSBArrows :

Unpatched

.text:FFFFF97FFF1B157D mov r8d, r13d

.text:FFFFF97FFF1B1580 mov rdx, r14

.text:FFFFF97FFF1B1583 call xxxDrawScrollBar

; xxxDrawScrollBar could've issued usermode callback

.text:FFFFF97FFF1B1588 jmp short

loc_FFFFF97FFF1B1519

[...]

.text:FFFFF97FFF1B1519 mov eax, [rbx]

; Dereference tagSBINFO ptr without sanity check

.text:FFFFF97FFF1B151B mov ebp, 0FFFFFFFBh

.text:FFFFF97FFF1B1520 xor eax, esi

In the code above, win32k!xxxDrawScrollBar can under the right circumstances make a

call to userland at which point the tagSBINFO can be freed by the attacker. When returning to

the code above, the instruction at 0xFFFFF97FFF1B1519 will then use the now invalid pointer.

Patched

.text:FFFFF97FFF1D69C3 xor r8d, r8d

.text:FFFFF97FFF1D69C6 mov rdx, rbp

.text:FFFFF97FFF1D69C9 call xxxDrawScrollBar

; Could've issued usermode callback

NCC Group | Page 4 © Copyright 2015 NCC Group

.text:FFFFF97FFF1D69CE cmp rbx, [rdi+0B0h]

; Is tagSBINFO ptr still correct?

.text:FFFFF97FFF1D69D5 jz short

loc_FFFFF97FFF1D69E4 ; If so, continue

.text:FFFFF97FFF1D69D7

.text:FFFFF97FFF1D69D7 loc_FFFFF97FFF1D69D7:

.text:FFFFF97FFF1D69D7 mov rcx, rbp

.text:FFFFF97FFF1D69DA call _ReleaseDC

.text:FFFFF97FFF1D69DF jmp loc_FFFFF97FFF1D6958

; Jump to exit function block

.text:FFFFF97FFF1D69E4 ; ---

.text:FFFFF97FFF1D69E4

.text:FFFFF97FFF1D69E4 loc_FFFFF97FFF1D69E4:

.text:FFFFF97FFF1D69E4 mov eax, [rbx]

; Safely deref the unchanged tagSBINFO ptr

.text:FFFFF97FFF1D69E6 xor eax, r14d

In the patched version above, we see that the original tagSBINFO pointer is checked for NULL

before being dereferenced. More information about the related structures will be provided later.

The Basics - Getting to stage 1 memory corruption

When building the exploit, we achieve corruption in a series of stages. So we can think of

triggering the bug as stage one corruption.

Technically the root of the issue is a use-after-free on the desktop heap (more on that heap

later). This was confusing to me at first, because I wasn't familiar with usermode callback

functions used by win32k.sys or how they were expected to work, so I thought the problem

might actually be a race condition due to some locking issue that in turn let you trigger the use-

after-free. But in the end, the locking of the structures that actually support locking was correct

and the way things are behaving on that front is expected. The real problem in a nutshell is:

1. The win32k!xxxEnableWndSBArrows function holds a desktop heap pointer to

a tagSBINFO struct, used to describe a scrollbar, that it reads out of the associated

window's tagWND struct.

2. The win32k!xxxEnableWndSBArrows function makes a call to a function that can

result in a usermode callback (that can be hooked).

NCC Group | Page 5 © Copyright 2015 NCC Group

3. Once code is executing in userland, changes to structures on the desktop heap can

occur by calling other win32k.sys system calls, including freeing the tagSBINFO struct

from the desktop heap.

4. Upon returning to kernel mode, the win32k!xxxEnableWndSBArrows does not re-

reference and validate the original tagSBINFO pointer from the tagWND struct it was

originally obtained from (which would now indicate it as being freed), but instead keeps

using the now-stale pointer.

That's it. Ignoring how usermode callbacks work for now, this part is pretty straightforward.

Understanding what we control

But what does this actually let us corrupt and why? As Udi’s blog post mentions, you can

effectively set or unset two bits from what the code believes is the WSBFlags member of

the tagSBINFO structure. This isn't really an ideal use-after-free scenario, but the paper gives a

hint how to leverage this, which I will describe in the next section. But first, let's better

understand how we can control the bit manipulation.

First let's look at the tagSBINFO structure (consistent across 32/64-bit):

kd> dt -b !tagSBINFO

win32k!tagSBINFO

 +0x000 WSBflags : Int4B

 +0x004 Horz : tagSBDATA

 +0x000 posMin : Int4B

 +0x004 posMax : Int4B

 +0x008 page : Int4B

 +0x00c pos : Int4B

 +0x014 Vert : tagSBDATA

 +0x000 posMin : Int4B

 +0x004 posMax : Int4B

 +0x008 page : Int4B

 +0x00c pos : Int4B

The UAF bug lives in win32k!xxxEnableWndSBArrows(), which is responsible for enabling

and disabling one or both of the horizontal and vertical scrollbar arrows associated with a

scrollbar control. A scrollbar control is effectively a special window used to manipulate a

scrollbar. It can be created with CreateWindow() by using the built-in "SCROLLBAR" system

class.

The function prototype for win32k!xxxEnableWndSBArrows() is:

http://breakingmalware.com/vulnerabilities/one-bit-rule-bypassing-windows-10-protections-using-single-bit/

NCC Group | Page 6 © Copyright 2015 NCC Group

BOOL xxxEnableWndSBArrows(PWND wnd, UINT WSBflags, UINT wArrows);

The WSBFlags parameter corresponds to the scrollbar userland constants in WinUser.h , and

specifies which scrollbar will actually be operated on:

#define SB_HORZ 0

#define SB_VERT 1

#define SB_CTL 2

#define SB_BOTH 3

The wArrows parameter actually specifies the state of the arrows, which is either enabled or

disabled. Bits being set mean the arrow is disabled and bits unset mean the arrow is enabled.

The least significant two bits of wArrows correspond to the horizontal scrollbar. The next two

bits correspond to the vertical scrollbar. The rest of the wArrows bits don't matter for the sake

of exploitation.

The following code, from win32k!xxxEnableWndSBArrows() , shows setting or unsetting the

horizontal arrow bits, if the SB_HORZ or SB_BOTH flag was set:

The bug actually manifests between setting the horizontal and vertical scrollbar flags. After

updating the horizontal scrollbar, as long as the window associated with the scrollbar is currently

visible on the desktop, the win32k!xxxEnableWndSBArrows() function will

https://msdn.microsoft.com/en-us/library/windows/desktop/bb787579(v=vs.85).aspx

NCC Group | Page 7 © Copyright 2015 NCC Group

call win32k!xxxDrawScrollBar() , which the original paper notes can potentially drive down

into a usermode callback.

Before we discuss usermode callbacks, let's first continue to discuss what happens after the call

to win32k!xxxDrawScrollBar() . This is effectively the same logic as for the horizontal bar,

but slightly different bits. If we chose to disable the vertical scrollbar, and assuming we triggered

the use-after-free, this will write two bits into whatever is now allocated in place of

the tagSBINFO chunk. So assuming the value was originally 0x2, it would now be 0xe. This is

shown in the figure below.

This bit flip is enough to eventually get code execution. I did not investigate a way to achieve

exploitation by unsetting bits, but it might be possible.

One important thing about the above is that in order for both the horizontal and vertical bars to

actually be operated on, the scrollbar must have been created in a way that indicates it has

both. This involves setting the WS_HSCROLL andWS_VSCROLL flags when

calling CreateWindow() . An example is below:

 g_hSBCtl = CreateWindowEx(

 0, // No extended style

 "SCROLLBAR", // class

 NULL, // name

 SBS_HORZ | WS_HSCROLL | WS_VSCROLL, // need both SB

types

 10, // x

 10, // y

 100, // width

 100, // height

 g_hSpray[UAFWND], // a non control

parent window is required

 (HMENU)NULL,

NCC Group | Page 8 © Copyright 2015 NCC Group

 NULL, // window owner

 NULL // extra params

);

You also want to ensure it's visible (it should be by default, but just in case):

 result = ShowWindow(g_hSBCtl, SW_SHOW);

By default the scrollbars are enabled, once we're ready to try to hit the vulnerable code shown

above we can disable them, to eventually set the bits we want to corrupt:

 result = EnableScrollBar(g_hSBCtl, SB_CTL | SB_BOTH,

ESB_DISABLE_BOTH);

Triggering the bug

So above I explained what the bug is and how to trigger some of the related code, but we're still

missing the very important step of intercepting the usermode callback triggered

by win32k!xxxDrawScrollBar() so we can change the contents of the heap

before win32k!xxxEnableWndSBArrows() continues running. We need to actually trigger the

bug, which, if you don't know anything about win32k.sys or any of these APIs, as was the

case with me starting out, is an adventure on its own.

The original paper contains a good call-stack diagram showing that deep within the functionality

triggered by thewin32k!xxxDrawScrollBar() call, the ClientLoadLibrary() function will

be called, and gets dispatched through the KeUserModeCallback() function. We need to

figure out what exactly KeUserModeCallback() calls, so we can try to hook it in our process.

I found a few good papers that had bits and pieces about how usermode callbacks work. The

posts and papers that touch on it, amongst other win32k areas that I found very useful, are:

 https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf (Tarjei’s

white paper)

 http://azimuthsecurity.com/resources/recon2012_mandt.pptx (Tarjei’s slides with extra info)

 http://www.nynaeve.net/?p=204

 http://www.cprogramdevelop.com/3825874/

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
http://azimuthsecurity.com/resources/recon2012_mandt.pptx
http://www.nynaeve.net/?p=204
http://www.cprogramdevelop.com/3825874/

NCC Group | Page 9 © Copyright 2015 NCC Group

 http://www.zer0mem.sk/?p=410

 https://www.reactos.org/wiki/Techwiki:RegisterUserApiHook

 http://pasotech.altervista.org/windows_internals/Win32KSYS.pdf

 http://j00ru.vexillium.org/?p=614

 http://uninformed.org/index.cgi?v=10&a=2#SECTION00042000000000000000

Basically, each process maintains a table of usermode callback function pointers, to which

the PEB->KernelCallBackTable member points. When the kernel wants to call a usermode

function it will pass a function index to KeUserModeCallBack() . In the case above, the index

corresponds to the __ClientLoadLibrary() function in userland.

KeUserModeCallBack() will end up calling the KiUserModeCallbackDispatch() function

in userland, which in turn looks up the index in the PEB->KernelCallBackTable and

executes it.

In order to hook a given entry, you can look up the PEB->KernelCallBackTable table and

patch out the __ClientLoadLibrary() index directly. It should be noted that these indices

can differ for each OS version, but are consistent across architectures.

If we want to investigate the PEB->KernelCallBackTable table to see what's in there and to

work out indices, we find the address of the table using WinDbg. Note that I alternate between

32-bit and 64-bit for examples where it shouldn't make a big difference:

kd> dt !_PEB @$peb

ntdll!_PEB

 +0x000 InheritedAddressSpace : 0 ''

 +0x001 ReadImageFileExecOptions : 0 ''

 +0x002 BeingDebugged : 0 ''

 +0x003 BitField : 0x8 ''

 +0x003 ImageUsesLargePages : 0y0

[...]

 +0x02c KernelCallbackTable : 0x76daf620 Void

kd> dds 0x76daf620

76daf620 76d96443 user32!__fnCOPYDATA

76daf624 76ddf0e4 user32!__fnCOPYGLOBALDATA

76daf628 76da736b user32!__fnDWORD

76daf62c 76d9d603 user32!__fnNCDESTROY

76daf630 76dc50f9 user32!__fnDWORDOPTINLPMSG

76daf634 76ddf1be user32!__fnINOUTDRAG

76daf638 76dc6cd0 user32!__fnGETTEXTLENGTHS

76daf63c 76ddf412 user32!__fnINCNTOUTSTRING

http://www.zer0mem.sk/?p=410
https://www.reactos.org/wiki/Techwiki:RegisterUserApiHook
http://pasotech.altervista.org/windows_internals/Win32KSYS.pdf
http://j00ru.vexillium.org/?p=614
http://uninformed.org/index.cgi?v=10&a=2#SECTION00042000000000000000
https://en.wikipedia.org/wiki/WinDbg

NCC Group | Page 10 © Copyright 2015 NCC Group

76daf640 76d9ce49 user32!__fnINCNTOUTSTRINGNULL

[...]

76daf724 76da3962 user32!__ClientLoadLibrary

kd> ?? (0x76daf724-0x76daf620)/4

int 0n65

In the example above we know that the __ClientLoadLibrary function is index 65, so that is

the entry we want to hook. What I noticed after hooking is that

the __ClientLoadLibrary function is called a lot by win32k-related code! The first thing I

needed to do was indicate to my hook right before I actually triggered the call that we're

interested in, so that we could know exactly which call into the hook we needed to change. So

the hook code checks a global flag, and only tries to do something interesting if it's set.

There were then two more hurdles:

1) If I let the original __ClientLoadLibrary functions behave normally, when I actually

triggered the vulnerable call in win32k.sys I found that it never ended up actually making its way

into userland. I didn't investigate this too heavily, but I assume it's possibly because whatever

library it's loading for this call is already loaded so it determines it doesn't need to call the

function again. In order to work around this I had my hook manipulate every call

into __ClientLoadLibrary to return no result, which forces it to retry to load the library

constantly. I worked out that passing back NULLs in the structure parameter was enough just by

reversing __ClientLoadLibrary() in user32.dll.

2) The call into EnableScrollBar() ends up triggering __ClientLoadLibrary calls before

the one that's triggered by win32k!xxxDrawScrollBar() which we want to abuse, so I had

to work out the number of calls before the one I’m interested in and use a counter so I know to

trigger the bug on the exact right call into the hook. Fortunately, this count is stable across both

architectures and OS versions.

So the hook looks like this:

void

ClientLoadLibraryHook(void * p)

{

 CHAR Buf[PGSZ];

 memset(Buf, 0, sizeof(Buf));

 if (g_PwnFlag) {

 dprintf("[+] __ClientLoadLibrary hook called\n");

 if (++g_HookCount == 2) {

NCC Group | Page 11 © Copyright 2015 NCC Group

 g_PwnFlag = 0; // Only fire once..

 ReplaceScrollBarChunk(NULL);

 }

 }

 fpClientLoadLibrary(&Buf); // call original

}

Once we know for sure we've been called specifically from the call

to win32k!xxxDrawScrollBar() we can try to trigger the bug. For now, since we're just

worried about triggering, we can just call DestroyWindow(g_hSBCtl) . This will be enough to

free the tagSBINFO structure from the window The window structure itself won't be freed yet

because there is still a reference count as it is still in use by the original call, but

the tagSBINFO has no such reference-counting mechanism so is freed in the process.

At this point we've triggered the bug. Even if we don't reallocate the now-free chunk that was

holding tagSBINFO , we will write the two disable bits to whatever is now in that freed heap

location. The next step is to replace this freed chunk with one we want to put there, so we can

do something more interesting than just flip a couple of bits. In order to do this, we need a bit of

background on the desktop heap.

The desktop heap

The desktop heap is used by win32k.sys to store GUI objects associated with a given desktop.

This includes window objects and their associated structures, like property lists, window text,

and scrollbars. The Tarjei paper touches on this, but what's most important to note is that it's

actually just a simplified version of the userland backend allocator that operates

using RtlAllocateHeap() and RtlHeapFree() . The heap is tracked by a _HEAP structure

like you’d expect. There is no frontend allocator, so no Low Fragmentation Heap, no Lookaside

list, etc.

Every time you create a desktop, a heap is created to service it. This means that we can

actually allocate a new desktop in order to get a much "fresher" heap that we can more

predictably manipulate. However, it is worth noting that a process running in a low-integrity

environment is actually not allowed to create a new desktop.

What's primarily of interest for now (we'll cover more details later about the metadata and such)

is tracking allocations.

Monitoring desktop heap allocations

To monitor allocations and frees from the desktop heap I used the following WinDbg script:

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf

NCC Group | Page 12 © Copyright 2015 NCC Group

64-bit heap monitoring

ba e 1 nt!RtlFreeHeap ".printf\"RtlFreeHeap(%p, 0x%x, %p)\", @rcx,

@edx, @r8; .echo ; gc";

ba e 1 nt!RtlAllocateHeap "r @$t2 = @r8; r @$t3 = @rcx; gu; .printf

\"RtlAllocateHeap(%p, 0x%x):\", @$t3, @$t2; r @rax; gc";

32-bit heap monitoring

ba e 1 nt!RtlAllocateHeap "r @$t2 = poi(@esp+c); r @$t3 = poi(@esp+4);

gu; .printf \"RtlAllocateHeap(%p, 0x%x):\", @$t3, @$t2; r @eax; gc";

ba e 1 nt!RtlFreeHeap ".printf\"RtlFreeHeap(%p, 0x%x, %p)\",

poi(@esp+4), poi(@esp+8), poi(@esp+c); .echo ; gc"

In addition to these breakpoint scripts, because the desktop heap is actually just a simplified

form of the userland backend allocator, we can actually leverage the !heap command in

WinDBG itself.

Filling heap holes

In order to exploit the bug we need to replace this recently freed tagSBINFO chunk, but we

also know from how these bugs are typically exploited that we'll eventually be corrupting some

adjacent data. This gives us the fundamental requirement of predictably allocating chunks of

interest adjacent to our corrupted structure. And in order to predict where a chunk is allocated,

we must be in control of the entire heap layout (or as much as possible). The logical way to go

about this is to try to fill in as many free chunks as we can so all new allocations are adjacent

and if we need holes we can create them at predictable locations (by freeing the associated

chunk).

Part of this is simply understanding side effect allocations, which the WinDbg scripts above can

help with. Tarjei mentioned most of the main objects of interest allocated on this heap in his

win32k slides, which I found to be pretty consistent with what I was seeing. His list is:

 Window

 Menu

 Hook

 CallProcData

 Input Context

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_Slides.pdf

NCC Group | Page 13 © Copyright 2015 NCC Group

The desktop heap is pretty interesting in that most allocations are directly tied to window

objects, managed by thetagWND structure, which means if we want to allocate a chunk of an

arbitrary size (say a small size to fill a small hole), then we first need an allocated window to

interact with. You can basically think of a window structure as an allocation interface to the

heap. Another point of interest is that many allocations you can create through a window cannot

subsequently be destroyed without destroying the window itself, which obviously has heap side

effects. Lastly, let’s assume a window allows you to allocate a chunk of size N. Just for the sake

of example, what if, for whatever reason, we need twenty allocations of size N? The actual

things in a window that let us allocate an arbitrary size are not stored on lists. So each window

lets you do one controlled allocate of size N. So if you need to make twenty allocations of size

N, you must first create twenty windows and use each window to facilitate the allocation.

There are three additional important datatypes, also allocated on this heap, that we can

indirectly use for controlling data on the heap via window objects. I will use these pretty

extensively for exploitation and feng shui. These are:

1. tagPROPLIST structures: these serve as a small enough allocation that they will fill any

small holes we're worried about. A window containing a single tagPROPLIST entry will

allocate 0x10 bytes on 32-bit and 0x18 bytes on 64-bit.

2. Window text: This is an arbitrary sized UNICODE string allocation on the desktop heap,

which is stored in a_LARGE_UNICODE_STRING structure embedded in

the tagWND structure. Note that the strName member is a structure, not a pointer, but

the structure will contain a pointer to an associated window text allocation.

3. tagSBINFO structures: the source of the vulnerability, but also contain four partially or

fully controlled members.

The following diagram demonstrates the relationship between these datatypes:

NCC Group | Page 14 © Copyright 2015 NCC Group

To do the initial heap filling I create a large number of tagWND structures (by creating new

Windows). This has the effect of filling a lot of big holes on the heap, and also gives us

interfaces in order to do other allocations as needed. On Windows 8 and Windows 8.1

allocating a new window results in an auto-allocation of a tagPROPLIST structure (which you

can observe during development using the WinDbg scripts above). On Windows 7 and earlier

we allocate new tagPROPLIST entries ourselves, and these serve to fill any small holes.

At this point every Window we sprayed has no corresponding window text strings value, so we

could still use those for arbitrary size allocations and frees as needed. Once created you can't

actually remove an existing property list without destroying the corresponding Window, but you

can force the list to be reallocated to accommodate a new entry, which can be used to create a

hole at the previous location. To do this you simply need to set a new property with an identifier

(atomKey) that doesn't already exist in the list.

Validating feng shui layouts

Interestingly, the desktop heap is mapped as read-only into userland. This means that we can

validate the feng shui layouts we're trying to create and bail out if things didn't work out. First we

need to figure out where the userland map of the desktop heap is. This is once again described

by Tarjei in his win32k paper. The PEB contains an undocumented structure

called Win32ClientInfo , which is defined approximately as follows:

typedef struct _CLIENTINFO

{

 ULONG_PTR CI_flags;

 ULONG_PTR cSpins;

 DWORD dwExpWinVer;

 DWORD dwCompatFlags;

 DWORD dwCompatFlags2;

 DWORD dwTIFlags;

 PDESKTOPINFO pDeskInfo;

 ULONG_PTR ulClientDelta;

 // incomplete. see reactos

} CLIENTINFO, *PCLIENTINFO;

First the PDESKTOPINFO structure contains the following:

typedef struct _DESKTOPINFO { PVOID pvDesktopBase; PVOID pvDesktopLimit;

// incomplete. see reactos } DESKTOPINFO, *PDESKTOPINFO;

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf

NCC Group | Page 15 © Copyright 2015 NCC Group

The pvDesktopBase contains the kernel address of the desktop heap, which we record. Next

the ulClientDelta value from the Win32ClientInfo structure contains a delta which is the

offset between the userland mapping and the kernel mapping, which tells us the information.

However, we don't want to have to parse the heap ourselves if we don't have to, so we ideally

also want to be able to take a given user32 handle, like an HWND value, and convert it to the

address in the userland mapping, so we can actually determine where it is in relation to other

allocations. In order to do HANDLE lookups, we need to find a structure called gShared , which

is normally stored in user32.dll . On Windows 7 and later this address is exported, so is easy

to find.

On most systems the structure is defined as follows:

kd> dt !tagSHAREDINFO

win32k!tagSHAREDINFO

 +0x000 psi : Ptr32 tagSERVERINFO

 +0x004 aheList : Ptr32 _HANDLEENTRY

 +0x008 HeEntrySize : Uint4B

 +0x00c pDispInfo : Ptr32 tagDISPLAYINFO

 +0x010 ulSharedDelta : Uint4B

 +0x014 awmControl : [31] _WNDMSG

 +0x10c DefWindowMsgs : _WNDMSG

 +0x114 DefWindowSpecMsgs : _WNDMSG

In the structure above, aheList is a pointer to an array of handles, and

each _HANDLEENTRY contains a pointer to the actual kernel address of the handle. We can

then subtract our known userland delta from it and have a usable address to investigate.

Unfortunately, finding the gSharedInfo data on systems earlier than Windows 7 is not so

easy, as the symbol is not exported. Tarjei's paper states that the undocumented

CsrClientConnectToServer function could be used to obtain a copy of gSharedInfo , but I

could find no working examples. One annoying hurdle with implementation is that the size of the

structures needed by the function change between 64-bit Vista, 32-bit Vista, and 64-bit and 32-

bit Windows XP, so you can’t quite trust what you find in ReactOS from my experience.

Once we figure out where things are mapped, we can build functions that tell us exactly where

window objects are on the desktop heap. Then if we want to know where a corresponding

property list or text chunk was allocated, we can just parse that structure at that location in

userland.

NCC Group | Page 16 © Copyright 2015 NCC Group

Replacing tagSBINFO with tagPROPLIST

Now we're finally getting closer to exploiting this. We have a way to massage the heap, a way to

validate that our chunks are in the right positions, and we can trigger the bug, so now we can

finally ensure the freed tagSBINFO chunk is replaced with a tagPROPLIST property list of our

choosing. Note that because tagPROPLIST is just the header of a larger list, we are able to

match the size of the list to the scrollbar info chunk, which we'll describe shortly. It is basically

an array of tagPROP entries, but is called a property list; so I will use the terms array and list

interchangeably. A tagPROPLIST structure looks like the following on 64-bit:

kd> dt -b !tagPROPLIST

win32k!tagPROPLIST

 +0x000 cEntries : Uint4B

 +0x004 iFirstFree : Uint4B

 +0x008 aprop : tagPROP

 +0x000 hData : Ptr64

 +0x008 atomKey : Uint2B

 +0x00a fs : Uint2B

As alluded to earlier, a property list is associated with a window. Property lists are created with

the SetProp() function. It works by searching for an existing property with a

matching atomKey, and if one isn't found, a new property entry is created within the property

list. If no property list is found at all, one is allocated and linked into the tagWND structure.

So assuming we've sprayed a bug of tagWND structures and created associated

tagPROPLIST entries for each one, this ends up with a layout similar to that shown below:

NCC Group | Page 17 © Copyright 2015 NCC Group

Once this is set up, we can allocate the scrollbar control we want to abuse. This will result in

something similar to the following:

NCC Group | Page 18 © Copyright 2015 NCC Group

Then we interact with the scrollbar control, causing our hooked usermode callback to fire, which

lets us free the tagSBINFO structure by attempting to destroy the window. This results in a

layout similar to the following:

NCC Group | Page 19 © Copyright 2015 NCC Group

On 64-bit, a tagSBINFO structure is 0x28 bytes and a single entry tagPROPLIST array is 0x18

bytes, 0x10 bytes of which are the default tagPROP entry. So a property list with two entries will

be 0x28 bytes (0x8 + 0x10 + 0x10), which is a perfect fit. Let's assume we've sprayed memory

so that we have all holes filled. We'll just need to use one window with a pre-existing property

list and plan to add a new entry to its list immediately after freeing the tagSBINFO (already

illustrated in previous diagrams). What this does is free the 0x18 chunk associated with the

original tagPROPLIST structure, which due to heap spraying won't be adjacent to free chunks

and therefore won't coalesce into anything to create a chunk large enough to hold the

subsequent 0x28 byte allocation we're hoping for. Instead the recently

freed tagSBINFO location will be used. This scenario is illustrated below:

NCC Group | Page 20 © Copyright 2015 NCC Group

When we return from the callback we hooked, the UAF will trigger and bits will be written into

the tagPROPLIST , specifically the cEntries member. Originally cEntries is 0x2,

corresponding to the two property list entries we've created. After corruption it becomes 0xe,

corresponding to bits three and four (counting from one) being set.

From this point we've created a new memory corruption primitive. Any time we add a property

list to this corrupted tagPROPLIST entry, up to 0xc more entries, we will overwrite whatever is

adjacent on the heap. I refer to this as stage two corruption.

Property list abuse - stage two corruption

In Udi’s blog this is really as far as the explanation went. This was described as a "traditional

buffer overflow" from this point onwards, however in my experience it was still very difficult to go

from this point to an arbitrary read/write primitive or a way to get code execution. Let's revisit

the tagPROPLIST structure on 64-bit:

kd> dt -b !tagPROPLIST

win32k!tagPROPLIST

 +0x000 cEntries : Uint4B

 +0x004 iFirstFree : Uint4B

NCC Group | Page 21 © Copyright 2015 NCC Group

 +0x008 aprop : tagPROP

 +0x000 hData : Ptr64

 +0x008 atomKey : Uint2B

 +0x00a fs : Uint2B

Stage one has left us with a corrupted tagPROPLIST array that allows us to write

additional tagPROP structures. There are only two members in a tagPROPLIST :

 cEntries : Indicates the total number of entries the list can hold.

 iFirstFree : Indicates the index of the first free entry. A full list (meaning a new one

should be allocated) is indicated by iFirstFree == cEntries .

When a new property entry is being inserted into a list, a function is first called to scan every

entry up until theiFirstFree index is hit. At no point is there a check to see if iFirstFree is

greater than cEntries during this logic. If the corresponding atomKey isn't found in the list,

then a check is done to ensure that iFirstFree != cEntries . If true then a new entry is

inserted at index iFirstFree . If the size test was false (meaning iFirstFree ==

cEntries) then a new list that includes space for the new entry will be allocated, at which point

the list is copied over and the new entry is added.

The tagPROP structures are associated with the SetProp() function. The hData member

corresponds to the HANDLE hData argument of SetProp() . It is a process-specific value that

is simply identified by the atomKey member. Fortunately for us, because it is process-specific

we can provide any value we want - it is simply opaque data as far as the kernel is concerned.

On 64-bit this gives us eight bytes of control, and on 32-bit four bytes.

The atomKey member corresponds to the LPCTSTR lpString argument. As per the MSDN

documentation for SetProp() , the caller can pass in either a pointer to a string or a 16-bit

atom value. In the case of a string being passed in, this will be automatically converted to an

atom prior to actually being stored in the property list. Because we can effectively pass any

atom value into SetProp(), this gives us the ability to control these two bytes as well;

however, there are some constraints. If we're adding a new property list to an array, the unique

identifier of the entry is the atomKey . Thus when corrupting data we can never repeat the

same atomKey , otherwise when setting a new entry, it will replace the old entry with the

matching key. Finally, the fs member is not controlled by us and is set to 0 for

corresponding atomKey values < 0xBFFF, which correspond to integer atoms.

The fs member is set to 2 for atomKey values >= 0xC000.

One more point to note is that you might have noticed that the tagPROP is only 0xc bytes. This

structure ends up being aligned to 0x10 bytes on 64-bit, so we also end up with an additional

https://msdn.microsoft.com/en-us/library/windows/desktop/ms633568(v=vs.85).aspx

NCC Group | Page 22 © Copyright 2015 NCC Group

four bytes that aren't written and so can't be corrupted when inserting a tagPROP entry. The

last important point is that the start of a chunk holding a tagPROPLIST list begins with the 0x8

bytes of data defining the array size, meaning that each new tagPROP entry will always be

written to an address ending with 0x8.

So for every tagPROP we insert, on 64-bit, this gives us:

* Offset 0x0: 8 bytes of arbitrary controlled data (hData)

* Offset 0x8: 2 bytes of almost controlled data (atomKey)

* Offset 0xa: 2 bytes of non-controlled data (fs)

* Offset 0xc: 4 bytes of non-modified data (padding)

This is far better than two bits, but it's still not great. Unless we can overwrite something with the

first eight bytes of data from the fully controlled hData member, we'll be quite limited. If we

need to write to some member deep within an adjacent structure, we also can't really avoid

uncontrolled corruption of certain values. In spending quite a bit of time looking at various

objects on the desktop heap, with the above corruption constraints in mind, the only way I could

think of to leverage this to build an arbitrary read/write primitive was to corrupt

the strName member of an adjacent tagWND structure, which is a structure of the

type _LARGE_UNICODE_STRING :

kd> dt !_LARGE_UNICODE_STRING

win32k!_LARGE_UNICODE_STRING

 +0x000 Length : Uint4B

 +0x004 MaximumLength : Pos 0, 31 Bits

 +0x004 bAnsi : Pos 31, 1 Bit

 +0x008 Buffer : Ptr64 Uint2B

If we could corrupt the Buffer member of this structure we could then operate on the window

string to read and write up to MaximumLength bytes from the given address. So this is what I

did. You might also recognize this structure from the earlier section on how to create chunks on

the desktop heap of arbitrary size and data, as it is the exact same thing that can be used there.

Now that we understand how we can use tagPROPLIST entries to corrupt data and what parts

we control, and most importantly what constraints we are faced with, this is where the

techniques for 32-bit and 64-bit diverge. What I did first on 64-bit ended up not working on 32-

bit.

NCC Group | Page 23 © Copyright 2015 NCC Group

What I do next is quickly turn stage two corruption (aka writing with tagPROP structs) into yet

another corruption primitive that lets us write fully controlled data, which I refer to as stage three

corruption.

Building a read/write primitive - Stage three corruption

64-bit

The plan is to corrupt the strName member of an adjacent tagWND struct. We already know

it’s a _LARGE_UNICODE_STRING , but let's take a look at the tagWND structure in more detail to

see what this thing we want to target actually looks like:

kd> dt !tagWND

win32k!tagWND

 +0x000 head : _THRDESKHEAD

 +0x028 state : Uint4B

 +0x028 bHasMeun : Pos 0, 1 Bit

 +0x028 bHasVerticalScrollbar : Pos 1, 1 Bit

 +0x028 bHasHorizontalScrollbar : Pos 2, 1 Bit

[SNIPPED FLAGS]

 +0x028 bDestroyed : Pos 31, 1 Bit

 +0x02c state2 : Uint4B

[SNIPPED FLAGS]

 +0x02c bWMCreateMsgProcessed : Pos 31, 1 Bit

 +0x030 ExStyle : Uint4B

 +0x030 bWS_EX_DLGMODALFRAME : Pos 0, 1 Bit

 +0x030 bUnused1 : Pos 1, 1 Bit

 +0x030 bWS_EX_NOPARENTNOTIFY : Pos 2, 1 Bit

[SNIPPED FLAGS]

 +0x030 bUIStateFocusRectHidden : Pos 31, 1 Bit

 +0x034 style : Uint4B

 +0x034 bReserved1 : Pos 0, 16 Bits

[SNIPPED FLAGS]

 +0x034 bWS_POPUP : Pos 31, 1 Bit

 +0x038 hModule : Ptr64 Void

 +0x040 hMod16 : Uint2B

 +0x042 fnid : Uint2B

 +0x048 spwndNext : Ptr64 tagWND

 +0x050 spwndPrev : Ptr64 tagWND

 +0x058 spwndParent : Ptr64 tagWND

 +0x060 spwndChild : Ptr64 tagWND

NCC Group | Page 24 © Copyright 2015 NCC Group

 +0x068 spwndOwner : Ptr64 tagWND

 +0x070 rcWindow : tagRECT

 +0x080 rcClient : tagRECT

 +0x090 lpfnWndProc : Ptr64 int64

 +0x098 pcls : Ptr64 tagCLS

 +0x0a0 hrgnUpdate : Ptr64 HRGN__

 +0x0a8 ppropList : Ptr64 tagPROPLIST

 +0x0b0 pSBInfo : Ptr64 tagSBINFO

 +0x0b8 spmenuSys : Ptr64 tagMENU

 +0x0c0 spmenu : Ptr64 tagMENU

 +0x0c8 hrgnClip : Ptr64 HRGN__

 +0x0d0 hrgnNewFrame : Ptr64 HRGN__

 +0x0d8 strName : _LARGE_UNICODE_STRING

 +0x0e8 cbwndExtra : Int4B

 +0x0f0 spwndLastActive : Ptr64 tagWND

 +0x0f8 hImc : Ptr64 HIMC__

 +0x100 dwUserData : Uint8B

 +0x108 pActCtx : Ptr64 _ACTIVATION_CONTEXT

 +0x110 pTransform : Ptr64 _D3DMATRIX

 +0x118 spwndClipboardListenerNext : Ptr64 tagWND

 +0x120 ExStyle2 : Uint4B

 +0x120 bClipboardListener : Pos 0, 1 Bit

[SNIPPED FLAGS]

 +0x120 bChildNoActivate : Pos 11, 1 Bit

In the 64-bit structure above we can see that the _LARGE_UNICODE_STRING structure we want

to overwrite starts at offset 0xd8. You'll also notice a significant number of members earlier in

the structure. Originally I had hoped to just trample this carefree, but there are numerous

pointers in _THRDESKHEAD that we need to stay sane, and unfortunately we can't actually

control what we write there because of the constraints we already discussed.

The _THRDESKHEAD structure looks like:

kd> dt !_THRDESKHEAD

win32k!_THRDESKHEAD

 +0x000 h : Ptr64 Void

 +0x008 cLockObj : Uint4B

 +0x010 pti : Ptr64 tagTHREADINFO

 +0x018 rpdesk : Ptr64 tagDESKTOP

 +0x020 pSelf : Ptr64 UChar

NCC Group | Page 25 © Copyright 2015 NCC Group

Not only does clobbering _THRDESKHEAD cause us problems, but let's revisit our alignment

constraints. Our new tagPROP entry at whatever offset we are writing it will always end up

writing directly over top of the exact start of the _LARGE_UNICODE_STRING structure:

win32k!_LARGE_UNICODE_STRING

 +0x000 Length <-- hData (fully controlled) would

overwrite this

 +0x004 MaximumLength <-- and this

 +0x004 bAnsi <-- and this

 +0x008 Buffer <-- atomKey and fs (only partially

controlled) would overwrite this

It's specifically the Buffer pointer we want to overwrite in order to access arbitrary memory

however, so even if we could safely clobber the rest of the structure, we wouldn't control the one

pointer we need to control.

The answer to our inability to corrupt arbitrary data is to turn the tagPROPLIST corruption into

an entirely different corruption mechanism.

On versions of Windows after XP, the userland backend allocator (and so kernel desktop heap)

chunk headers (aka _HEAP_ENTRY structures) are stored in-band and are located right before

the actual contents of the chunk. The Desktop heap itself is managed by a _HEAP structure,

which tracks the various free and in use chunks.

A _HEAP_ENTRY is defined as follows:

kd> dt !_HEAP_ENTRY

ntdll!_HEAP_ENTRY

 +0x000 PreviousBlockPrivateData : Ptr64 Void

 +0x008 Size : Uint2B

 +0x00a Flags : UChar

 +0x00b SmallTagIndex : UChar

 +0x00c PreviousSize : Uint2B

 +0x00e SegmentOffset : UChar

 +0x00f UnusedBytes : UChar

The chunk header is 0x10 bytes total. The first eight bytes,

called PreviousBlockPrivateData , are used to hold actual chunk data from a previous

NCC Group | Page 26 © Copyright 2015 NCC Group

chunk if the requested size spilled over the normal 0x10 chunk alignment by <= 8 bytes. This is

explained briefly in a nice Leviathan blog entry, as well as other earlier userland heap articles.

The Size and PreviousSize members represent the chunk size of the current and previous

chunks, divided by 0x10. The Flags member is used to indicate if a given chunk is free, etc.

If _HEAP_ENTRY security is enabled in the corresponding _HEAP structure that manages the

heap, then the SmallTagIndex entry will hold a XORed checksum value of some of the

expected values in the chunk.

Although alignment hasn't been favorable to us so far, it is actually in this situation. If you recall

the tagPROPLIST is always at least 0x18, and then an extra 0x10 bytes for every

new tagPROP entry added. For a two-entry property list of size 0x28 this means it will actually

be placed into a chunk of 0x20 bytes and those PreviousBlockPrivateData spillover bytes

are used from the adjacent chunk. And this means that when we add a third entry and corrupt

whatever is immediately adjacent, the eight bytes of hData bytes we control will fit exactly over

the top of the more interesting parts of the _HEAP_ENTRY structure.

What we want to do is abuse this so that we can somehow write arbitrary data over the top of

the Buffer address. First we modify our heap layout so that adjacent to our

corrupted tagPROPLIST chunk we have a small chunk containing a text string associated with

some window we control during setup. I refer to this as an overlay chunk. Adjacent to this

overlay chunk we place the tagWND structure we actually want to corrupt. This is illustrated

below. Note that I've begun to omit the earlier sprayed chunks to save size, so these should

now be taken as implied.

Next we insert a third tagPROP entry into our corrupted tagPROPLIST list, which overwrites

the last eight bytes of the _HEAP_ENTRY and the first eight bytes of whatever was in the overlay

chunk. When we modify the _HEAP_ENTRY we specifically modify the Size parameter of the

https://www.leviathansecurity.com/blog/understanding-the-windows-allocator-a-redux/

NCC Group | Page 27 © Copyright 2015 NCC Group

overlay chunk to be significantly larger than the actual chunk size, making it large enough that it

will include (or overlay) the adjacent tagWND structure.

The goal is now to free the overlay chunk we just corrupted so that the heap algorithm places it

on a free list associated with a size that is larger than the chunk actually is, and then reallocates

it for use with new window text, which we will fully control. However, this causes a small

problem we first need to deal with. When the chunk is being freed, the heap algorithm will try to

walk ahead on the heap to the next adjacent chunk, which it determines using the

corrupted Size member. It will try to determine if this adjacent chunk is free and if so will

attempt to coalesce it. We want to make sure we control whatever it tries to reference, and that

a flag indicating that the chunk is busy is set. We do this by again slightly modifying our heap

layout. This time we place a buffer of fake heap headers all with the busy flag set and also

with PreviousSize values that correspond to the corrupted Size , which we can do simply by

using another window text allocation associated with yet another window This new layout is

illustrated as follows:

Now finally we can free the corrupted overlay chunk by updating the associated window with a

larger string than was originally allocated (0x10 bytes in the diagrams). This will first free the

corrupted chunk, placing it on the free list. However, the size was corrupted, and now the freed

chunk is advertised as much larger than it actually is. So we can actually just force this newly

freed chunk to be reused to service our new chunk allocation of larger size. This results in our

string data being written to the chunk, which we can then use to corrupt all of the

adjacent tagWND structure with arbitrary data. This is illustrated in the diagrams below:

NCC Group | Page 28 © Copyright 2015 NCC Group

So that facilitates what I describe as stage three corruption. We can technically now overwrite

the strName.Buffer pointer with any data we want. However, we still have the issue of

corrupting everything else in tagWND beforehand. But it turns out this isn't a problem, because

the desktop heap is mapped to userland! So before we corrupt everything, we just read all of

the contents out of the target tagWND structure, modify the strName structure contents to

anything we want, and then send all that data through as our text update!

Not only does this give us an arbitrary read or write primitive via the strName structure, but

updating strName is repeatable because of the way the logic of window text updating works.

As long as the string you're writing into the buffer is <= the MaximumLength member, it will

continue to reuse the same chunk. So every time we want to change the address

of strName to read or write somewhere new, we re-update the overlay chunk with a new string

and resupply our arbitrary data. The repeatability is illustrated in the diagram below. Note that I

once again zoom in the graphic for greater granularity on what is being corrupted each time:

NCC Group | Page 29 © Copyright 2015 NCC Group

This means we only end up corrupting two additional things (aside from the

original tagPROPLIST entry):

1. The overlay chunk heap header. We can actually read this before we corrupt it, so we

know how to fix it up after the fact. Funnily enough, we can even fix up the chunk by

rewriting the 3rd tagPROPLIST entry, as long as we send through the atomKey we

used in order to corrupt it in the first place!

2. The strName structure, which we can easily fix by a subsequent write of window text

data. We can just set this all back to NULL when we're done.

So now if we want to read some amount of bytes from anywhere in memory, we query the

window text, using InternalGetWindowText() , that is associated with the target window that

has the corrupted strName entry. We can read up to the number of bytes we placed into

the Length member. Similarly, if we want to write to an arbitrary location in memory, we update

that corrupted window’s text, using NtUserDefSetText with data equal to or less than the fake

size we placed into the MaximumLength member, and it will reuse the existing buffer, which

just points wherever we want.

Windows 8 and 8.1 heap encoding

Although the backend allocator in userland started using heap encoding as of Windows Vista,

the desktop heap never bothered enabling it until Windows 8 and later. So this causes a hurdle

when we're doing the overlay chunk overwrite that was described above. However, it turns out

the _HEAP structure used to define the heap also holds the actual cookie used to encode all

heap headers, so we can just read this out of the userland mapping of the desktop heap and

https://msdn.microsoft.com/en-us/library/windows/desktop/ms633523(v=vs.85).aspx
http://blogs.technet.com/b/srd/archive/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities.aspx

NCC Group | Page 30 © Copyright 2015 NCC Group

then ensure that the overlay chunks header is properly encoded, by mimicking the logic

reversed from the allocator, and the allocator won't complain.

32-bit

The first and most important thing to note about 32-bit is that the tagPROP structure is now a

total of 0x8 bytes (instead of 0xc bytes on 64-bit), and the hData member we control is now

only 0x4 bytes (rather than 0x8 bytes on 64-bit). Also there is no longer any additional padding

(instead of the 0x4 bytes of padding on 64-bit), as the whole structure fits neatly within 0x8

bytes. But this means that we can't completely corrupt an adjacent chunk header as we would

only partially control the data. On some versions of Windows this would be okay, as we can

control the most important fields, but on Windows 8 and 8.1 where the header is encoded, we

will end up overwriting a part of the header with the fs member in an unsafe way. On 32-bit

the _HEAP_ENTRY header looks similar, but is missing the

PreviousBlockPrivateData entry.

We still can't corrupt every part of tagWND because we inevitably break pointers. But I still didn't

find any new interesting objects to target and because _LARGE_UNICODE_STRING worked so

well on 64-bit I was kind of set on using it for 32-bit.

My idea was that if we could corrupt the iFirstFree member (recall, the index of the first free

entry in the property list) of a tagPROPLIST structure in such a way that we could increase the

index, we could point it to some adjacent location further on the heap. We could, for instance,

try to point it over the top of the strName member of the adjacent tagWND struct. The following

diagram illustrates this general idea:

To make things clear now that we're dealing with two tagPROPLIST structures, I'll call the UAF

property list 'list A' and the other list 'list B'. We need to know exactly what part of

our tagPROP inserted into 'list A' will overwrite the iFirstFree entry of 'list B'. We also have to

keep in mind that we're only writing eight bytes at a time, so we're going to have to at least

NCC Group | Page 31 © Copyright 2015 NCC Group

insert one additional tagPROP into 'list A', as the first will corrupt the adjacent heap header, and

only the second will hit the 'list B' tagPROPLIST values. Depending on the OS and chunk sizes

in play, this may vary, and I had to accommodate various layouts in my exploit. For now let's

assume that we need to insert only two to corrupt 'list B' though. What exactly we'll be

corrupting is shown in the following diagram. Note that the first tagPROPLIST in the diagram is

not broken out into its individual members, so tagPROP[0] is implied. However, in the second

tagPROPLIST I have broken out the internals to show what we're corrupting, which is why

the tagPROP[0] entry is shown:

First we note that if we're writing eight bytes for each tagPROP , then that means we'll only

partially control what is written over iFirstFree (because it will come

from atomKey and fs members), which is the value we're most concerned about. Because we

fully control the two least significant bytes of the value with our atomKey it actually works out

okay, as the value will be small enough that fs will be 0. So we will use our hData value to

overwrite cEntries with some sane value, and use atomKey to point iFirstFree where we

want in the target tagWND . We want to overwrite the strName.Buffer pointer

in tagWND specifically. If we couldn't overwrite the Length and MaximumLength values

directly, that would be okay, because we could pre-allocate a string for the target window to

ensure the lengths are already set to some large value.

NCC Group | Page 32 © Copyright 2015 NCC Group

Let's look at the tagWND struct on 32-bit to see what we've got. Note that this time I'm using

the -b switch so we can easily compute the offset of the Buffer embedded in

the strName struct.

kd> dt -b !tagWND

win32k!tagWND

 +0x000 head : _THRDESKHEAD

 +0x000 h : Ptr32

 +0x004 cLockObj : Uint4B

 +0x008 pti : Ptr32

 +0x00c rpdesk : Ptr32

 +0x010 pSelf : Ptr32

 +0x014 state : Uint4B

 +0x014 bHasMeun : Pos 0, 1 Bit

[SNIPPED FLAGS]

 +0x014 bDestroyed : Pos 31, 1 Bit

 +0x018 state2 : Uint4B

[SNIPPED FLAGS]

 +0x018 bWMCreateMsgProcessed : Pos 31, 1 Bit

 +0x01c ExStyle : Uint4B

 +0x01c bWS_EX_DLGMODALFRAME : Pos 0, 1 Bit

[SNIPPED FLAGS]

 +0x01c bUIStateFocusRectHidden : Pos 31, 1 Bit

 +0x020 style : Uint4B

 +0x020 bReserved1 : Pos 0, 16 Bits

[SNIPPED FLAGS]

 +0x020 bWS_POPUP : Pos 31, 1 Bit

 +0x024 hModule : Ptr32

 +0x028 hMod16 : Uint2B

 +0x02a fnid : Uint2B

 +0x02c spwndNext : Ptr32

 +0x030 spwndPrev : Ptr32

 +0x034 spwndParent : Ptr32

 +0x038 spwndChild : Ptr32

 +0x03c spwndOwner : Ptr32

 +0x040 rcWindow : tagRECT

 +0x000 left : Int4B

 +0x004 top : Int4B

 +0x008 right : Int4B

 +0x00c bottom : Int4B

 +0x050 rcClient : tagRECT

 +0x000 left : Int4B

NCC Group | Page 33 © Copyright 2015 NCC Group

 +0x004 top : Int4B

 +0x008 right : Int4B

 +0x00c bottom : Int4B

 +0x060 lpfnWndProc : Ptr32

 +0x064 pcls : Ptr32

 +0x068 hrgnUpdate : Ptr32

 +0x06c ppropList : Ptr32

 +0x070 pSBInfo : Ptr32

 +0x074 spmenuSys : Ptr32

 +0x078 spmenu : Ptr32

 +0x07c hrgnClip : Ptr32

 +0x080 hrgnNewFrame : Ptr32

 +0x084 strName : _LARGE_UNICODE_STRING

 +0x000 Length : Uint4B

 +0x004 MaximumLength : Pos 0, 31 Bits

 +0x004 bAnsi : Pos 31, 1 Bit

 +0x008 Buffer : Ptr32

 +0x090 cbwndExtra : Int4B

 +0x094 spwndLastActive : Ptr32

 +0x098 hImc : Ptr32

 +0x09c dwUserData : Uint4B

 +0x0a0 pActCtx : Ptr32

 +0x0a4 pTransform : Ptr32

 +0x0a8 spwndClipboardListenerNext : Ptr32

 +0x0ac ExStyle2 : Uint4B

 +0x0ac bClipboardListener : Pos 0, 1 Bit

[SNIPPED FLAGS]

 +0x0ac bChildNoActivate : Pos 11, 1 Bit

We see that strName is at offset 0x84 and Buffer is at offset 0x8c specifically. Remember

we're indexing from a 0x8 byte aligned array of tagPROP entries and we can only write 0x8

bytes. So we can easily work out that if we chose to make the iFirstFree index to offset 0x88

in the tagWND we would point at MaximumLength (overwritten by hData) and our write

wouldn't work because we'd only control two bytes of Buffer , whereas we want this to be our

arbitrary read/write primitive, so this isn't acceptable. If we try to write to the next index and point

to 0x90 then we'll be overwriting cbwndExtra (with hData), which isn't what we're after.

We need to think back to earlier and what we control for the purposes of doing heap feng shui,

and then look at these in tagWND to see if anything is at interesting offsets we might control. At

offset 0x70 in the tagWND struct we see the pSBInfo . This is divisible by 0x8 so we know that

we would actually be able to overwrite this pointer with the hData portion of our fake tagPROP .

NCC Group | Page 34 © Copyright 2015 NCC Group

What if we overwrote pSBInfo to point directly atstrName in the same tagWND struct? Maybe

we could use the scrollbar API to corrupt strName to get our primitive.

The pSBInfo member points to a tagSBINFO struct, which you might recall is the structure

type used way back during the very first use-after-free.

kd> dt -b !tagSBINFO

win32k!tagSBINFO

 +0x000 WSBflags : Int4B

 +0x004 Horz : tagSBDATA

 +0x000 posMin : Int4B

 +0x004 posMax : Int4B

 +0x008 page : Int4B

 +0x00c pos : Int4B

 +0x014 Vert : tagSBDATA

 +0x000 posMin : Int4B

 +0x004 posMax : Int4B

 +0x008 page : Int4B

 +0x00c pos : Int4B

If we remember, the WSBflags don't give us a lot of control, but we know at least that if we

enable either scrollbar ones will be set, and if we disable an active scrollbar zeroes will be set.

The flags member isn't really ideal for setting arbitrary values, but by reversing some related

functionality we can see that if we're not changing that state of the scrollbar, those flags won't

be changed. The values inside the tagSBDATA structure seem more interesting though. If we

look at the SetScrollInfo() documentation we can get a good understanding of what all of

these values represent. It looks like we can set these parameters in a SCROLLINFO struct that

we pass to SetScrollInfo() . As long as the adjacent window is a scrollbar control we are

corrupting, it will operate on the pSBInfo pointer directly (otherwise it would send a special

window message to the associated scrollbar control window). It appears we can control

the posMin and posMax values without any restrictions. The Page and pos members are a

little more finicky as they are expected to be within established range limits, so let’s try to avoid

them for now. We will pass the SIF_RANGE flag in the SCROLLINFO struct to indicate where we

want to write the min and max values specifically.

We want to overwrite Buffer with arbitrary data, which means we want posMin to overlap it,

so we can overwrite pSBInfo to point to strName.MaximumLength . As long as we don't

enable or disable the scrollbar, the WSBflags member won't be written to, which keeps

strName.MaximumLength intact. This means that whatever we placed in posMin ,

via nMin from SCROLLINFO , will be written to Buffer, and posMax will be written over

https://msdn.microsoft.com/en-us/library/windows/desktop/bb787595%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb787537(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb787529(v=vs.85).aspx

NCC Group | Page 35 © Copyright 2015 NCC Group

whatever is next, which is cbwndExtra . This isn't a big deal; as with 64-bit, we can pre-read

the value and fix it up later. The general concept of the overlap is illustrated below:

So let's walk through the 32-bit attack with diagrams. First, let's take a step back and look at a

diagram showing the relevant chunks and heap layout before we corrupt anything beyond the

initial use-after-free. I've now included even more granular info so it's clear exactly what we're

doing.

NCC Group | Page 36 © Copyright 2015 NCC Group

Next we insert two additional entries into 'list A', which will corrupt data adjacent to 'list A' thanks

to the use-after-free corruption, and allow us to point 'list B's iFirstFree entry to pSBInfo .

Note that we'll also corrupt the value adjacent to pSBInfo , but again we can pre-read it and fix

it up later.

NCC Group | Page 37 © Copyright 2015 NCC Group

Then we insert a new tagPROP into 'list B' with an identifier that doesn’t already exist in the list

resulting in the new entry being inserted at the next free index, which corrupts pSBInfo to point

at strName.MaximumLength in the same tagWND struct.

NCC Group | Page 38 © Copyright 2015 NCC Group

Finally we update the scrollbar structure to corrupt the Buffer member:

NCC Group | Page 39 © Copyright 2015 NCC Group

Remember that unlike the 64-bit case we're not actually corrupting the length values

in strName , so we need them to be sane already. We can do this by pre-allocating a text buffer

with a decently large length for the window, so that the values are already useful. Then

whenever we want to read or write a new value in kernel memory at a different address, we

simply call SetScrollInfo() on the target window and update the location of Buffer, and

then use the window text API on the target window.

That's it! We now have our repeatable arbitrary read/write primitive on 32-bit!

Getting code exec

Everything from now on simply assumes we have an arbitrary read/write primitive. So if I say

leak/read X or overwrite Y, it is just being done with the primitives we have built in the earlier

corruption stage. Mostly this is the same on both architectures. All we really have left to do is

overwrite a function pointer and redirect it to a payload somewhere. The most common way to

NCC Group | Page 40 © Copyright 2015 NCC Group

do this (popularised by reversemode) is to overwrite the second entry in

nt!HalDispatchTable , which normally holds

the HalQuerySystemInformation() function. Then you can force the pointer to be called by

calling NtQueryInternalProfile() from userland.

We need to leak the base address of the kernel in order to find nt!HalDispatchTable . To do

this I use the standard NtQuerySystemInformation() to fetch module information from

which you can pull a base address.

 // 11 corresponds to SystemModuleInformation class, which is

undocumented...

 rc = NtQuerySystemInformation((SYSTEM_INFORMATION_CLASS)11,

pModuleInfo, 0x100000, NULL);

Then I open a local copy of ntoskrnl.exe and look up the nt!HalDispatchTable offset,

which I can then easily apply to the leaked base address. I then use the read primitive to read

the original HaliQuerySystemInformation()address (which is not exported) so that it can

be fixed up later, and then use the write primitive to corrupt the function pointer with the address

of shellcode (in userspace or kernelspace; more on this later). This is the same on both 64-bit

and 32-bit aside from the size of the reads and writes.

Bypassing SMEP

SMEP support was introduced on Windows 8 and 8.1, and technically some security products

enforce it on Windows 7, so we can assume it's there as well. It prevents us from executing

code in userland while operating with kernel privileges, which makes overwriting

the nt!HalDispatchTable entry to point directly into userland much less useful. So instead

we want to point it somewhere in kernelspace that we control, that we can use to disable SMEP

by writing to cr4 and only then jump into userland. MWR documented an interesting trick on

64-bit that involves self-mapping page table entries that let you work out a valid kernel address

for an arbitrary virtual address. As long as you have a write primitive you can thus write directly

into the page table entry and modify the bits. I was able to adapt this trick to 32-bit fairly easily,

although the indices differ between PAE and non-PAE systems.

The most obvious way to do this would be to map an address in userland and then use the write

primitive to mark the page table entries as being supervisor rather than user. This is what I tried

first; it worked up until Windows 8 and then I ran into an interesting problem. The desktop

window manager (dwm.exe) on Windows 8 and later regularly scans through windows on

desktops and queries their names for some reason (which I didn’t investigate). It does this

without actually sending them a window message that you can ignore, but instead is able to find

http://www.reversemode.com/index.php?option=com_remository&Itemid=2&func=startdown&id=51
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/

NCC Group | Page 41 © Copyright 2015 NCC Group

the window handle and calls GetInternalWindowText() . So the problem is that we are using

the strName member of the window structure to point at the page table entry of our memory

mapping containing our shellcode, which is private to our processes page table.

When dwm.exe asks the kernel to give it the name, the wrong page table entries will be present

and so the kernel will see that the strName.Buffer address is not NULL and then

dereference the address, which will be invalid. This will BSOD the machine.

I worked around this by accepting that dwm.exe might query us, and so opting to use a kernel

address to hold the payload instead. This way the associated page table entry with that address

will always be valid no matter what process is currently loaded. I chose to place it onto the

desktop heap since I was already able to compute the kernel address of it using the previously-

mentioned approach. We can still use the self-mapping page table entry trick, but in this case

the page table is already marked as supervisor, it just won't be marked as executable. So

instead we just set the executable bit.

So the steps are quite easy:

1. Create a window text buffer containing our stage one payload and compute the kernel

address.

2. Use the self-mapping trick to compute the page table entry for the kernel address from

the previous step.

3. Use our write primitive to set the executable bit of the page table entry.

4. Overwrite nt!HalDispatchTable to the stage one kernel address.

5. Call NtQueryInternalProfile() to jump to the payload.

6. Disable SMEP in cr4 and jump to the stage two userland payload.

7. Execute the stage two userland payload to elevate privileges and return.

8. Restore SMEP in cr4 to prevent patchguard from complaining and return cleanly.

Bypassing Low Integrity Sandbox

On Windows 8.1 we might have an additional problem, which is that the

NtQuerySystemInformation() function now has checks for low integrity SIDs, which means

only medium integrity and above can leak the address of kernel bases. This is actually quite

easy to get around using the well-known sidt trick. We store the address of the IDT into

userland (which is unprivileged) and then use the read primitive to read whatever IDT index we

want. Most of them point into the kernel, so we can leak the address of an interrupt handler in

the kernel, and then do the exact same PE search.

Once we have the base, we can do the same computation of

the nt!HalDispatchTable address.

NCC Group | Page 42 © Copyright 2015 NCC Group

Normally the way you could do this type of lookups is to open ntokrnl.exe from the

filesystem and then resolve the symbol offset locally and add it to the leaked kernel base.

However, in a hardened sandbox this is not ideal because there might be filesystem restrictions

imposed preventing you from reading C:\windows\system32\ntoksrnl.exe for instance. To work

around this type of restriction we can use our leak primitive to parse the symbols we need from the

kernel PE header in memory.

Conclusion

That’s all. If you’ve made it this far I genuinely appreciate you taking the time to read everything! In

the end, using the techniques described in this write up, I was able to develop a reliable exploit

targeting both 32-bit and 64-bit on XP, Vista, 7, 8, 8.1, and Server 2012. On Windows 2003 and

2008 by default theming is not used, and it turns out that theming is required for the usermode

callback to hook; so I was unable to exploit these systems unless theming was explicitly enabled.

The process of exploitation was quite complicated and there were many hurdles to overcome, but it

also prompted a lot of interesting findings, a ton of learning, and was a great way to validate and

more thoroughly understand what many other public researchers hint at in their papers.

There is only one mitigation to stop this type of win32k.sys vulnerabilities to my knowledge, which

the Google Chrome sandbox uses, which is to effectively disable win32k syscalls at runtime.

As always I appreciate any feedback or corrections. If I described some technique and didn’t

adequately provide credit I would also appreciate knowing so I can update the entry. You can contact

me via twitter @fidgetingbits or via email: aaron<dot>adams<at>nccgroup<dot>trust.

https://code.google.com/p/chromium/issues/detail?id=365160
https://code.google.com/p/chromium/issues/detail?id=365160

NCC Group | Page 43 © Copyright 2015 NCC Group

